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INTRODUCTION.

The aim of the deliverable D1.3 “ NCT state of the art overview” is to summarize the current status of all

types of neuromorphic hardware technology from fully CM&Sed systems tsolutions exploiting the use

of memristive devices, advanced device concepts in the field of spintronic and photonics, and novel materials
including 2D, nanowires and organic materials.

D1.3 has been then been divided into the following three sectiongvercall the above topics:

Section lintroduces the current state of the art ddrge-scale neuromorphic computing systems based on
digital CMOS or analogue/mixed-signal technologies.

Section llintroduces thevarious types and physical mechanisms of memristive device technologies, which

include a broad class of two or thréerminal devices whose resistance can be modified upon electrical
stimuli. Moreover, we describe theroposed hardware implementation of synaptic and neuronal circuits
exploiting thog memristive technologies, which are currently at high maturity level, namely resistive
random access memory (RRAM), phase change memory (PCM), ferroelectric memory (FeRAM), and
magnetoresistive random access memories (MRAM), mesallatortransition (MT) devices, as well as

more explorative and innovative concepts.

Section lllintroduces the current state of the art efixed CMOS-memristive device neuromorphic chips.
While in the previous section we discuss mainly the implementation of some spextifismorphic function
by exploiting single or small blocks of memristive deyigethis section we summarize the current state of
monolithic integrated CMO®emristive devices in a chip, @f large systems demonstrated at mixed
software—hardwarelevel. Currently this section includes mainly the hybrid CNAB3M neuromorphic chip,
and IBM work on PCNbut it will be updated in the future with other technologiaad future advancements.
The updated version of this document will be published on tearbtech web sitelittps://neurotechai.eu)).

Section I. STATEFTHEART OFULLYXCMOS LARGECALE NEUROMORPHIC
PROCESSORS

1.1 Introduction.

Digital CMOSThe mainstay of the semiconductor manufacturing industigital CMOSs well understood

and delivers very consistent performance in volume manufacture. It can access the most advanced
semiconductor technologies, which helps offset its intrinsic eneffigiency disadvantages compared with
analogue circuits. When applied to neuromorphic atettures, asynchronous, clocked and hybrid
approaches to circuit timing can be used, and algorithms can be mapped into fixed (albeit highly
parameterised and configurable) circuits for efficiency, or into software for flexibility. Examples of the former
include theDeepSouth, IBM TrueNortlnd Intel Loihi , whileSpiNNakeand Tianjic are examples of the

latter softwarebased approach.

Analogue and mixegignal CMOS Eventbased analogue/mixedsignal CMOSbased neuromorphic
technology combines the compact and low power features of analogue circuits with the robustness and low
latency of digital evenrbased asynchronous circuits. The key feature of the msigdal design approach,
compared to the pure dital approach, is the ability to build systems able to carry out processing with
stringent resources in terms of power and memory. This goal is implemented by (i) only dissipating power
when the data is present, and (ii) processing the datdirme as it$ sensed or streamed through the system,
using circuits that have time constants matched to the dynamics of the sensory signals processed, and
without needing to store data or state variables in memory. This technology is an enabler for applications
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requiring submwW alwayson realtime processing of sensory signals, for example in edge computing,
personalized medicine anlditernet of Things domains. Examples of neuromorphic processors that follow
this approach are th® YNARDynamic Neuromorphic Asynamous Processor) series of devices [Moradi,
TBioCAS 201 BrainScaleSNeurogrid,and MNIFAT

Recent review papers describing large scale neuromorphic processor can be found in refs [1,2].
1.2. Brief description of current state of the art larggcaleneuromorphic systems

IBM TrueNorth chifg3,4,5]. The IBM TrueNorth chip is based upon distributed digital neural models aimed

at reaktime cognitive applications. IBM’s TrueNorth neuromorphic chip consists of 1 million digital neurons

capable of variouspiking behaviours. Each die holds 4096 cores, each core holding 256 digital neurons and
256 synapses per neuron. A single die consumes 72 mW of power. A board (NS16e) comprising 16 TrueNorth
chips has been developed; it consumes 1W of power at 1KHz speddlhg it ideal for energgfficient
applications. Although digital in its implementation, low power consumption results from fabrication in an
aggressive, statef-the-art 28 nm technology process.

Neurogrid[6]. The Stanford Neurogrid uses ré@he subthreshold analogue neural circuits. Neurogrid is a
mixed-mode multichip system primarily used for largeale neural simulations and visualization. Neurogrid
uses subthreshold analogue circuits to model neuron and synapse dynamics in biological realithme,
digital spike communication. The neuronal model uses shared leaky integrator dendritic structures whereby
an input to one neuron affects neighbouring neurons through a resistive network. The neuron dynamics are
defined by a quadratic integrate anddimodel. The neuron circuits used in Neurogrid are closely correlated
to the physical characteristics of neurons in the brain. It models the soma, dendritic trees, synapses, and
axonal arbors. It consists of 16 neurocores/chips each with 65 k neuroa8ifigtlM neurons) implemented

in subthreshold analog circuits. A single neurocore is fabricated on amih® 13.9mm die. A board of 16
neurocores is of size 6.5" x 7.5" and the complete board consumes roughly 3W of power (a single neurocore
consume ~150 mW).

BrainScales$7,8]. BrainScaleS stands for mixsignal accelerated neuromorphic computing based on
abovethreshold analogue neural circuits running up to 10,000 times faster than biological real time. It targets
research in the fields of commtional neuroscience, in particular lostgrm learning, and beyongon-
Neumann computing. The second generation systems add an embedded SIMD microprocessor allowing for,
amongst others, programmable plasticity rules. The systems were developed at Hegddtieersity over a

series of projects funded by the European Union, including the FACETS and the BrainScaleS pgajiect. On
support comes from the EU ICT Flagship Human Brain Project.

SpiNNaker [9-12]. The Manchester SpiNNaker machine is a-tigad digital manycore system that
implements neural and synapse models in software running on small embedded processors, again primarily
aimed at modelling biological nervous systems. SpiNNaker was designed for scalability and:Hivgzggy

by incorporatirg brainrinspired communication methods. It can be used for simulating large neural networks
and performing evenbased processing for other applications. Each node comprises 18 ARM968 processor
cores each with 32 Kbytes of local instruction memory andl8ads of local data memory, 128 Mbytes of
shared memory, a packet router, and supporting circuitry. A single node can model up to 16,000 digital
neurons with up to 16M synapses consuming 1W of power. There are two sizes of SpiNNaker circuit board,
the smaler being a 41ode (64,000 neuron) board and the larger artftle (768,000 neuron) board. The-48

node board consumes up to 60W of power. The SpiNNaker HBP neuromorphic computing system
incorporates a million processors on 1,200r&le boards and is capabbf simulating spiking networks up

to the scale of a mouse brain in biological real time.

Loihi[13]. The Loihi is a neuromorphic chip introducedrtgl Labs in 2018 and fabricated in Intel’s 14 nm
FinFET process technology. It simulates 130K neurahd30M synapses in real time. The chip consists of
128 neuromorphic cores that are capable ofdmip training and inference. A hierarchical mesh protocol is
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implemented to support communication between the neuromorphic cores. Loihi is said to be thalfirst
integrated spiking neural network chip that supports sparse network compressioni@ame multicast,
variable synaptic format, and populatidrased hierarchical connectivity. Loihi incorporates an eguased
synaptic modification architectura iaddition to pairwise and triplet STDP. Loihi includes computation blocks
such as stochastic noise, which might be added to a neuron’s synaptic response current, membrane voltage,

and refractory delay for solving probabilistic inference problems. Loihsobre optimization problems such

as LASSO, being over three orders of magnitude better in terms of energy gleldyct as compared to a
CPUbased solver.

MNIFAT [14]. This is a mixethode VLSbased neural array with reconfigurable, weighted
synapse/connectivity. The novel integratend-fire array transceiver (IFAT) neural array (MNIFAT) consists
of 2,040 MihalasNiebur (M-N) neurons developed in the lab of Ralph Etiethenmings at the John
Hopkins University. Each of these-Nl neurons was designei have the capability to operate as two
independent integrateandire (I&F) neurons. This resulted in 2,046-Wneurons and 4,080 leaky I&F
neurons. This neural array was implemented in 0.5um CMOS technology with a 5V nominal power supply
voltage (Lichdteiner et al., 2008). Each I&F consumes an area of 1,495 um2, while the neural array dissipates

an average of 360 pJ of energy per synaptic event at 5V.

HIAERIFAT[15,16]. The Hierarchical addresgent routing integrateandfire array transceiver (HIABRAT)
provides a multiscale tree based extension of AER synaptic routing for dynamically reconfiguratdadmng
synaptic connectivity in neuromorphic computing systems, developed in the lab of Gert Cauwenberghs at
the University of California San Diego

DeepSouth[17,18]. DeepSouth is the cortex emulator designed for simulating large and structurally
connected spiking neural networks in the lab of André van Schaik at the MARCS Institute, Western Sydney
University, Australia.

DYNAH19-21]. The DYNAP (Dynamic Neurmorphic Asynchronous Processor) family of neuromorphic chips
consists of dynage [19] and dynajgel. DYNAISE implements a multiore neuromorphic processor with
scalable architecture fabricated using a standard 0.18 u®MLEEMOS technology. It is a falistom
asynchronous mixedignal processor, with a fully asynchronous iatere and interchip hierarchical routing
architecture. Each core comprises 256 adaptive exponential integiraddire (AEI&F) neurons for a totaf

1k neurons per chip. Each neuron has a Content Addressable Memory (CAM) block, containing 64 addresses
representing the presynaptic neurons that the neuron is subscribed to. Four different synapse types can be
chosen for each synapse: fast excitatimpbitory, slow excitatory/inhibitory. Each synapse type is modelled

by a dedicated DPI circuit [21] with globally shared bias values per core that determine synaptic weights and
time constants. These circuits produce EPSCs and IPSCs (ExcitatoryAnBRifstoBynaptic Currents), with

time constants that can range from a few microseconds to hundreds of milliseconds. The analog circuits are
operated in the sukihreshold domain, thus minimizing the dynamic power consumption, and enabling
implementations ofneural and synaptic behaviors with biologically plausible temporal dynamics. For each
core, there is an oichip programmable temperatureompensated biagenerator which supplies 25
different parameters to the analog circuits to govern the behavior andadyos of the neurons and
synapses.The asynchronous CAMs on the synapses are used to store the tags of the source neuron addresses
connected to them, while the SRAM cells are used to program the address of the destination core/chip that
the neuron targets.

DynapSEL is a fiwere fullyasynchronous mixedignal spiking neural network chip with -chip learning

(STDP) fabricated in 28nm FDSOI process with a silicon area of 2.8mm x 2.6mm. The 28 niseDgmiaps

is a mixeesignal multicore neuromorphic progssor that comprises four neural processing cores, each with

16 x 16 AEI&F neurons and 6Biiprogrammable synapses per neuron, and a fifth core with 1 x 64 neurons

and 64 x 128 plastic synapses featuringcbip learning circuits. The learning core afsdudes 64 x 64 nen

plastic synapses. All synaptic inputs in all cores are triggered by incoming Address Events (AEs), which are
routed among cores and across chips by asynchronous AdHxesg Representation (AER) digital router
circuits. Neurons intgrate synaptic input currents and eventually produce output spikes, which are
translated into AEs and routed to the desired destination via the AER routing circuits. Both chips inelude a 3
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level hierarchical routing architecture for memory efficient rogtiof the events between multiple cores and
chips which makes them scalable to much larger networks.

2IFWTA chig22,23]. The 2DIFWTA (2D Integreaad-Fire WinnefTakeAll) chip was developed at the
cluster of Excellence in Cognitive Interaction Technolotf EC arBlelefeld University, Germany in the lab

of Pr. Elisabetta Chicca. The 2DIFWTA chip was implemented using a standansh Go8b-metal CMOS
technology (Figure 18). It comprises a tdimensional array of 32 x 64 (2,048) 1&F neurons. Each nduro
receives inputs from AER synapses (two excitatory and one inhibitory) and local excitatory synapses. The local
connections implement recurrent cooperation for either a tdimensional or 32 mondimensional WTA
networks. Cooperation in 2D involves fireeighbourconnections, while cooperation in 1D involves fiestd
secondneighbour connections. Competition has to be implemented through the AER communication
protocol, and it is therefore flexible in terms of connectivity pattern.

Tianjic chig24,25]. The Tianjic chiiga fully synchronous digital ASIC that integrates two approaches, namely
the prevailing computesciencebased artificial neural network (ANN) and neuroscieimspired (SNN)
models and algorithms, to provide a hybrid, synergisticfptat. The Tianjic chip adopts a maogre
architecture, reconfigurable building blocks and a streamlined dataflow with hybrid coding schemes. A 28
nm prototype chip was fabricated in the in UMGr28 HLP CMOS process with >&B/s internal memory
bandwidh. Tianjic is the first unified ASIC that covers most neural network models across neuromorphic
computing and deep learning. The unified functional core (UFC) has a number of neurons N = 256 and 156
UFCs are integrated in one single chip. Tianjic reqaDB8 clock cycles to complete a round of computation
and communication, which reflects the minimum latency of the time phase. For a single chip, the effective
peak power efficiency is 1.28 TOPS/W (ANN mode) and 649 GSyOPS/W (SNN mode), and the imenpal me
bandwidth could reach >610 GB/s.

ODIN[26]. Odin is a 2&m digital neuromorphic chip by Catholic University Louvain in 2019 supporting
simple forms of orchip spikedriven synaptic plasticity [8]. The core symrts 256 neurons that can be
configuied to implement firstorder LIF dynamics as well as seconder Izhikevich dynamics. The neuronal
parameters are stored in a-lilobyte SRAM array, and a global controller is used to-timéi- plex the
neuron logic circuit to implement the dynamic$ the neurons in a sequential fashion. The core also
integrates 3bit 2562 synapses, which are implemented as &iRthyte SRAM array. An additional bit is used
per synapse to enable or disable online learning.

Finally,a goup at Intel has recently repdedin 2019 a papef27] describing a reconfigurable 409@uron,
1M-synapse chip in 28m FInFET CMOS . T31¢N éatures digital circuits for leaky integrate and fire neuron
models, orchip spiketiming-dependent plasticity (STDP) learning, and Haghout multicast spike
communication. The SNN achieves a peak throughput of 25.2 GSOP/s at 0.9 V, peak energy effigi8n
pJ/SOP at 525 mV, and 218//neuron operation at 450 mV. On-chip unsupervised STDP trains a spiking
restricted Boltzmann machine to d®ise Modified National Institute of Standards and Technology (MNIST)
digits and to reconstruct natural scemaages with RMSE of 0.036. A biraggivation multilayer perceptron
with 50% sparse weights is trained offline with error backpropagation to classify MNIST digits with 97.9%
accuracy at 1-u/classification.

Finally, aditional literature works are alstelated to accelerata, for completenessve report the related
referencesof some of themEyeriss [8], ESE [2], EIH30], DRISLA3[L], DNA B2]
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Section II: EMERGING NEUROMORPHIC TECHNOLOGIES BEYOND CMOS

2.1 Memristive devices technologies: from physics of novel devices to the implementation of
synaptic and neuroriunctionalities

The senamedmemristive device technologies include a broad class of two or thréerminal devices whose
resistance can be modified upon electrical stimuli. The resistance changes can last for short or long time
scales, leading to a volaibr nonvolatile memory effect, respectively. Memristive devices are based on a
large variety of physical mechanisms, such as redox reactions and ion migration, phase transitiens, spin
polarized tunnelling, and ferroelectric polarization-G], and they lave the potential to meet the
considerable demand for new devices that enable enaffigient and areeaefficient information processing
beyond the von Neumann paradigm [19p The leading memristive technologies which are currently at high
maturity levd are those firstly developed as nawolatile memory devices for storage applications and then
integrated in large arrays and in combination with CMOS, naraestive random access memory (RRAM),

Phase change memory (PCM), Ferroelectric memory (FeRAM), and magnetoresistive random access
memories (MRAM). Recently, RRAM, PCM, FeERAM and-spimsfer torque MRAM have been receiving
increasing interest for neuromorphic computing, and many hardware demonstration have been reported at
device, but also circuitral systems level [EQ2]. The results are promising and despite the system level
integration is still not at the level of the fully CM®&sed one, the field is improving very fast, and driven by
the parallel advancement of these technologies and theirG&Vintegration for storage or -imemory
computing applications. In addition to the more consolidated technologies, many developments are
underway towards new and less matures concepts which span from new materials (2D, nanowires) [13,14],
devices based ometakinsulator transition (for instance \\ased devices) [15,16], organic material [17],
advanced device concepts in the field of spintronics (domain wall;trace memory, skyrmions) [6,18] and
photonics[19] A recent review on emerging neuromorphievices and architectures enabled by quantum
dots, metal nanoparticles, polymers, nanotubes, nanowires-dimoensional layered materials and van der
Waals heterojunctions can be found in [20].

The interesting device features which can be exploitedvéarromorphic computing are, in some extent, the
same engineered for storage applications. In particular we can mention the capability to retain the
information for extended time ( i.e., their nevolatility), fast switching speed, low switching energydo
cycling switching endurance, compact size, low process temperature fabrication (down to < 400 °C),
compatibility with CMOS integration, stackability on midifer to increase the density. Despite the
differences and peculiarity of each technology, liséed properties can enable the use of memristive device
technologies in complex circuits and systems, and the high device density decreases the cost of computing
systems. Moreover, it is worth noting that these devices can exhibit additional interdstihges which can

be explored and optimized for neuromorphic computing, in particular the multilevel state or analogue
operation, stochasticity and intrinsic variability, rich dynamics of the devices including the possibility to
engineer their retentiorin different time scales [1;9] . Today, there is therefore a significant effort in the
scientific and industrial community to take advantage of these new technologies to build a brain inspired
computing hardware, mimicking key features of biologicalapges and neurons, such nwolatility and
plasticity, as well as oscillatory and stochastic behaviour. While it is not generally true that a single memristive
device can implement at hardware level all the desired functionalities reproducing the syoaptéral
dynamics, memristive devices can enable the fabrication of small circuit blocks for synapses and neurons,
bringing the additional advantage, with respect to standard CMOS solutions, efahatility and overall
smaller size. Many solutions habeen currently already proposed for the hardware implementation of
synaptic and neuronal functionalities, as listed below.

2.2.Synapse Implementation.

The key features of artificial synapses are the ability to update their states given new inforifi@éionng,
plasticity) and to store analogue information (memory). Two approaches have been mainly proposed to
implement synapses: analogue synapses which exploit the multilevel or analog control of RRAM, [1,2,2
PCM [1,2,23] and FeRAM [24226] devicesand advanced spintronic devices storing analogue information

in magnetic textures (as demonstrated through domain wall motion in magnetic tunnel junctions, or

9



representing analogue information in the number of magnetic skyrmions). [6, 18] . A secomndeippelies
on the use of binary stochastic device, as demonstrated for filamentary RRANEE,2and STTMRAM [3]

2.3 Neuron function implementation

Despite currently the neuron functionalities in hardware neural network can be implemented in GMOS
using transistors and capacitor, the stochastic, volatility and-limear properties of memristive device
technologies pave the way of building advanced low power and compact hardware neuronal blocks
representing complex and biological inspired néduaction. In particular, we can mention FeRAN|[, VO
—based MIT devices [14,382], PCM [3], STIMRAM [34, and spirtorque nancoscillators (i.especific

types of magnetic tunnel junctions, which can be driven into spontaneous microwave ostdlatjoan
injected direct current) [6,5]
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Section lll. NEUROMORPHIC SYSTEMS BASED ON MIXEMEMRISTIVE
TECHNOLOGIES ARCHITECTURES

3.1. Introduction.

The aim of this section is to present the current state of the art of neuromorphic hardware baseitash
CMOS-memristive device neuromorphic chips. We will mainly focus on the demonstration ofonolithic
integrated CMO$nemristive devices in a chip. lddition we will list any relevant advancement on systems
based on a mixed softwarehardware level, or board demonstration. It is worth noting that currently most

of the neuromorphic chip or chip for artificial intelligence still use external memoriessily embedded
SRAM. Anyway, it more and more important to have memory embedded as close as possible to the
processing element, and therefore embedded memory technology (or more in general memristive
technologies) with CMOS is a hot topic for future regaorphic chips. Then it is expected in the future that
the number of proposed neuromorphic architectures which exploit new memory technologies will increase
in the future. A summary and comparison of current emerging memories under investigation for
neuromorphic computing can be found in the following Table (Figure 3.1) extracted from the review paper
by V. Milo et al. [1]

CHICD e it Memristive Emerging Memories

Technology Memories
INI‘?SI; r\:_?:l:) RRAM PCM STT-MRAM  FeRAM  FeFET  SOT-MRAM Li-ion
ON/OFF Ratio 10t 10* 10-10*  10%-10°* 152 10>-10°  5-50 1.5-2 40-10°
X":’t'l“l';:;" 2 bit 4 bit 2bit  2bit I bit I bit 5 bit 1 bit 10 bit
Write voltage <10V >10V <3V <3V <15V <3V <5V <15V <1V
Write time 1-10 ps 0.1-1 ms <10 ns ~50 ns <10 ns ~30 ns ~10 ns <10 ns <10 ns
Read time ~50 ns ~10 ps <10 ns <10 ns <10 ns <10 ns ~10 ns <10 ns <10 ns
Stand-by power Low Low Low Low Low Low Low Low Low
Write energy (J/bit) ~ ~100 p]J ~10 f] 0.1-1 pJ 10 pJ ~100 f] ~100 f] <1f] <100 f] ~100 f]
Linearity Low Low Low Low None None Low None High
Drift No No Weak Yes No No No No No
Integration density High Very High High High High Low High High Low
Retention Long Long Medium Long Medium Long Long Medium
Endurance 10 10* 105108 100-10° 1015 101 >10° >1015 >10°
?)lrl\i.l;\‘[b::‘i]ti'\lv‘::; No No No No No No Moderate No Yes
Stttability foe Yes Yes Moderate ‘es No No Yes No Yes

DNN inference
Suitability
for SNN Yes No Yes Yes Moderate Yes Yes Moderate Moderate
applications

Figure 3.1. Comparison of key features exhibited by CMOS mainstream memory devices and
memristive emerging memory devices under investigation to implement neuromorphic
computing in hardware. Reproduced from [1].
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3.2 Mixed CMOSnemristive devices architecture: monolithic integration of memristive devices
(RRAMand PCNlwith CMOS

In this paragraph we describe few examplesulfy integrated CMORAM neuromorphic chips.

SPIRIT chip.SPIKING NEURAL NETWORK WITH ANALOG NEURONS AND RRAM SEYEAHSHS
France

TheSpirit chip[2] is a chip featuring the complete integration of a Spiking Neural Network, combining analog
neurons and Resiive RAM (RRAMjased synapsed he implemented topology is a perceptron, aimed at
performing MNIST classification. An existing framework was tailored for offline learning and weight
guantization. The test chip, fabricated in 130nm CMOS, showscwetiolled integration of synaptic
currents and no RRAM read disturb issue during inference tasks (at least 750M Sileasiimber of RRVA
synapses/mmz2 is 16 kbithe classification accuracy is 84%, with a 3.6 pJ energy dissipation per spike at the
synapse and neuron level (up to 5x lowsr similar chips using formal coding).

Moreover, additional chipare the one proposed by CNRS and-CEN3], and by CEA.LETStanford #].
At ISSCC 2019, GHATI and Stanford University jointly presented a testchip integra8k@ of ReRAM on
top of 130nm silicon CMO®Bith a MCU 1é&bit with 8KB of SRAM]. The proofof-concept chip was validated
for a variety of applications including machine learnitwptrol, security, AloT.

RAND chipResistive Analog Neuro Device (RAND) chip from PANASONIC

The RANDchip proposed by Panasonid] [s a lowpower and higfaccuracy neuratetwork (NN) processor

using ReRAM to store weights as analog resistance. They proposed a ReRAM perceptron circuit for realizing
large scale integration, highly accuratellccurrent controlled writing scheme, and flexible network
architecture (FNA) in whidny NNs can be configured. Tladficated 180nm test chip shows wethntrolled

analog cell current with linear 30pA dynamic range and 0.59uA variation of 1 sigma, results in 90.8% MNIST
numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell
current and 66.5 TOPS/W power efficiendye RAND chifiabricatedby 180nm process consumes power of
15.8mW on a 1024 input inferend®EAD, achieving power efficiency of 20.7 TOPS/W. In addition, 40nm
ReRAM reduces power consumption during an infereREAD to 9.9mW, thus achieving power efficiency of

66.5 TOPS/W

ReASOmrhip- University of Zirich, Switzerland: 130 nm CMOS teship with integrated RRAM

ReASOn (Resistive Array of Synapses with ONline led6jirsg testchip featuring 2048 memristive devices
(HfG RRAM) that implement 1024 memory cells connected teeurons via a programmable routing fabric.

The neurons include circuits that implement online learnimbis chip also features test circuits relevant for
neuromorphic applications including an alpha synapse, shunting syn#fetshian/antiHebbian/stqp
learning, and a new neuron circuit. All the circuits are highly tunable using external biases to make testing
and experimentation easier. The ReASOn chips was developed under the NeustAjéct
(http://www.neuram3.eu). The hardware realizatioris fully-integrated with CMOS by twstage process:
traditional CMOS process to the penultimate metal layer (foundry fabricatmaliRRAM devices fabricated

by CEAETI as a post prossing.

Process 130 nm CMOS with aaxtra postprocessing step
Power domains l2Vand4.7V

Number of 10s and packaging 104, CQFP128

Area of the chip 2705.16 um x 1905.16 um

Neuron type Leaky Integrate and Fire with learning block
Number of Synapses and Neurons 1024 plastic synapsesd 2 neurons

Specification of the ReASOn chip, as from the http://www.neuram3.euweb site
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Non-volatile-memory for synaptic signal processirgBM Research

At IBM Research, the work on integratisugalogsynaptic signal processiog digital CMO% bundled in the

Al Hardware Center [7The center is focused on enabling ngeneration chips and systems that support
the tremendous processing power and unprecedented speed that Al requires to realiak psténtial. In
Europe the IBM Research lab located in Zurich is a strong contributor to this .e@oossbar arrays
containing memristive devices are integrated in the baokl-of-line of a CMOS chip. The array performs an
analog computing of the sypéc interconnect between two layers of neurons in a deep neural network. The
memristors represent the weights of the neural network. Requirements on the memristors depend on their
application, inference or training. For deep neural network inferencembenristive devices must be tuned

to the desired resistance values at up to 100 levels. Long term retention and stability are key properties for
this application. Memristive elementmsed on phase changeaterials(PCMare an excellent candida{8].
High-end demonstrations showing the integration of these devices in the-badiof-line of a CMOS process
were realized[8-10Q]. For training neural networks on an analog synaptic signal processor, the controlled
change of the resistance is essential. PCM adsvican be tuned from higher to lower resistance by
crystallizing the phase change elemeloving back to a high resistance requires a full amorphization.
Resistive RAM devices based on oxides in which a filamentary conductive path is formed offeettialpot

for CMOS compatibility and enhanced resistance confd, 12] The technological efforts are
complemented with improvements of DNN training algorithms to facilitate the application of analog synaptic
signal processind.j].
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