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INTRODUCTION. 

The aim of the deliverable D1.3 “ NCT state of the art overview” is to summarize the current status of all 

types of neuromorphic hardware technology from fully CMOS-based systems to solutions exploiting the use 
of memristive devices, advanced device concepts in the field of spintronic and photonics, and novel materials 
including 2D, nanowires and organic materials. 

D1.3 has been then been divided into the following three sections to cover all the above topics: 

Section I introduces the current state of the art of large-scale neuromorphic computing systems based on 

digital CMOS or  analogue/mixed-signal technologies.  

Section II introduces the various types and physical mechanisms of memristive device technologies, which 
include a broad class of two or three-terminal devices whose resistance can be modified upon electrical 
stimuli. Moreover, we describe the proposed hardware implementation of synaptic and neuronal circuits 
exploiting those memristive technologies, which are currently at high maturity level,  namely resistive 
random access memory (RRAM), phase change memory (PCM), ferroelectric memory (FeRAM), and 
magnetoresistive random access memories (MRAM), metal-insulator-transition (MIT) devices, as well as 
more explorative and innovative concepts.  

Section III introduces the current state of the art of mixed CMOS-memristive device neuromorphic chips. 

While in the previous section we discuss mainly the implementation of some specific neuromorphic function 
by exploiting single or small blocks of memristive devices, in this section we summarize the current state of 
monolithic integrated CMOS-memristive devices in a chip, or of large systems demonstrated at mixed 
software – hardware level. Currently this section includes mainly the hybrid CMOS-RRAM neuromorphic chip, 
and IBM work on PCM, but it will be updated in the future with other technologies and future advancements. 
The updated version of this document will be published on the Neurotech web site (https://neurotechai.eu/). 

 

Section I. STATE OF THE ART OF FULLY-CMOS LARGE-SCALE NEUROMORPHIC 
PROCESSORS 

1.1 Introduction. 

Digital CMOS. The mainstay of the semiconductor manufacturing industry, digital CMOS is well understood 
and delivers very consistent performance in volume manufacture. It can access the most advanced 
semiconductor technologies, which helps offset its intrinsic energy-efficiency disadvantages compared with 
analogue circuits. When applied to neuromorphic architectures, asynchronous, clocked and hybrid 
approaches to circuit timing can be used, and algorithms can be mapped into fixed (albeit highly 
parameterised and configurable) circuits for efficiency, or into software for flexibility. Examples of the former 
include the DeepSouth, IBM TrueNorth, and Intel Loihi , while SpiNNaker and Tianjic  are examples of the 
latter software-based approach. 

Analogue and mixed-signal CMOS. Event-based analogue/mixed-signal CMOS based neuromorphic 
technology combines the compact and low power features of analogue circuits with the robustness and low-
latency of digital event-based asynchronous circuits. The key feature of the mixed-signal design approach, 
compared to the pure digital approach, is the ability to build systems able to carry out processing with 
stringent resources in terms of power and memory. This goal is implemented by (i) only dissipating power 
when the data is present, and (ii) processing the data on-line, as it is sensed or streamed through the system, 
using circuits that have time constants matched to the dynamics of the sensory signals processed, and 
without needing to store data or state variables in memory. This technology is an enabler for applications 
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requiring sub-mW always-on real-time processing of sensory signals, for example in edge computing, 
personalized medicine and Internet of Things domains. Examples of neuromorphic processors that follow 
this approach are the DYNAP (Dynamic Neuromorphic Asynchronous Processor) series of devices [Moradi, 
TBioCAS 2017], BrainScaleS, Neurogrid, and MNIFAT. 

Recent review papers describing large scale neuromorphic processor can be found in refs [1,2]. 

1.2. Brief description of current state of the art large-scale neuromorphic systems. 

IBM TrueNorth chip [3,4,5]. The IBM TrueNorth chip is based upon distributed digital neural models aimed 
at real-time cognitive applications. IBM’s TrueNorth neuromorphic chip consists of 1 million digital neurons 

capable of various spiking behaviours. Each die holds 4096 cores, each core holding 256 digital neurons and 
256 synapses per neuron. A single die consumes 72 mW of power. A board (NS16e) comprising 16 TrueNorth 
chips has been developed; it consumes 1W of power at 1KHz speed, making it ideal for energy-efficient 
applications. Although digital in its implementation, low power consumption results from fabrication in an 
aggressive, state-of-the-art 28 nm technology process. 

Neurogrid [6]. The Stanford Neurogrid uses real-time sub-threshold analogue neural circuits. Neurogrid is a 
mixed-mode multichip system primarily used for large-scale neural simulations and visualization. Neurogrid 
uses subthreshold analogue circuits to model neuron and synapse dynamics in biological real time, with 
digital spike communication. The neuronal model uses shared leaky integrator dendritic structures whereby 
an input to one neuron affects neighbouring neurons through a resistive network. The neuron dynamics are 
defined by a quadratic integrate and fire model. The neuron circuits used in Neurogrid are closely correlated 
to the physical characteristics of neurons in the brain. It models the soma, dendritic trees, synapses, and 
axonal arbors. It consists of 16 neurocores/chips each with 65 k neurons (totalling 1M neurons) implemented 
in sub-threshold analog circuits. A single neurocore is fabricated on an 11.9 mm× 13.9mm die. A board of 16 
neurocores is of size 6.5′′ × 7.5′′ and the complete board consumes roughly 3W of power (a single neurocore 

consumes ∼150 mW). 

BrainScalesS [7,8]. BrainScaleS stands for mixed-signal accelerated neuromorphic computing based on 
above-threshold analogue neural circuits running up to 10,000 times faster than biological real time. It targets 
research in the fields of computational neuroscience, in particular long-term learning, and beyond-von-
Neumann computing. The second generation systems add an embedded SIMD microprocessor allowing for, 
amongst others, programmable plasticity rules. The systems were developed at Heidelberg University over a 
series of projects funded by the European Union, including the FACETS and the BrainScaleS project. On-going 
support comes from the EU ICT Flagship Human Brain Project. 

SpiNNaker  [9-12]. The Manchester SpiNNaker machine is a real-time digital many-core system that 
implements neural and synapse models in software running on small embedded processors, again primarily 
aimed at modelling biological nervous systems. SpiNNaker was designed for scalability and energy-efficiency 
by incorporating brain-inspired communication methods. It can be used for simulating large neural networks 
and performing event-based processing for other applications. Each node comprises 18 ARM968 processor 
cores each with 32 Kbytes of local instruction memory and 64 Kbytes of local data memory, 128 Mbytes of 
shared memory, a packet router, and supporting circuitry. A single node can model up to 16,000 digital 
neurons with up to 16M synapses consuming 1W of power. There are two sizes of SpiNNaker circuit board, 
the smaller being a 4-node (64,000 neuron) board and the larger a 48-node (768,000 neuron) board. The 48-
node board consumes up to 60W of power. The SpiNNaker HBP neuromorphic computing system 
incorporates a million processors on 1,200 48-node boards and is capable of simulating spiking networks up 
to the scale of a mouse brain in biological real time. 

Loihi [13]. The Loihi is a neuromorphic chip introduced by Intel Labs in 2018 and fabricated in Intel’s 14 nm 

FinFET process technology. It simulates 130K neurons and 130M synapses in real time. The chip consists of 
128 neuromorphic cores that are capable of on-chip training and inference. A hierarchical mesh protocol is 
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implemented to support communication between the neuromorphic cores. Loihi is said to be the first fully-
integrated spiking neural network chip that supports sparse network compression, core-to-core multicast, 
variable synaptic format, and population-based hierarchical connectivity. Loihi incorporates an epoch-based 
synaptic modification architecture in addition to pairwise and triplet STDP. Loihi includes computation blocks 
such as stochastic noise, which might be added to a neuron’s synaptic response current, membrane voltage, 

and refractory delay for solving probabilistic inference problems. Loihi can solve optimization problems such 
as LASSO, being over three orders of magnitude better in terms of energy delay- product as compared to a 
CPU-based solver.  

MNIFAT [14]. This is a mixed-mode VLSI-based neural array with reconfigurable, weighted 
synapses/connectivity. The novel integrate-and-fire array transceiver (IFAT) neural array (MNIFAT) consists 
of 2,040 Mihalas–Niebur (M–N) neurons developed in the lab of Ralph Etienne-Cummings at the John 
Hopkins University. Each of these M–N neurons was designed to have the capability to operate as two 
independent integrate-and-fire (I&F) neurons. This resulted in 2,040 M–N neurons and 4,080 leaky I&F 
neurons. This neural array was implemented in 0.5μm CMOS technology with a 5V nominal power supply 

voltage (Lichtsteiner et al., 2008). Each I&F consumes an area of 1,495 μm2, while the neural array dissipates 

an average of 360 pJ of energy per synaptic event at 5V. 
HiAER-IFAT [15,16]. The Hierarchical address-event routing integrate-and-fire array transceiver (HiAER-IFAT) 
provides a multiscale tree based extension of AER synaptic routing for dynamically reconfigurable long-range 
synaptic connectivity in neuromorphic computing systems, developed in the lab of Gert Cauwenberghs at 
the University of California San Diego. 

DeepSouth [17,18]. DeepSouth is the cortex emulator designed for simulating large and structurally 
connected spiking neural networks in the lab of André van Schaik at the MARCS Institute, Western Sydney 
University, Australia. 

DYNAP [19-21]. The DYNAP (Dynamic Neurmorphic Asynchronous Processor) family of neuromorphic chips 
consists of dynap-se [19] and dynap-sel. DYNAP-SE implements a multi-core neuromorphic processor with 
scalable architecture fabricated using a standard 0.18 µm 1P6M CMOS technology. It is a full-custom 
asynchronous mixed-signal processor, with a fully asynchronous inter-core and inter-chip hierarchical routing 
architecture. Each core comprises 256 adaptive exponential integrate-and-fire  (AEI&F) neurons for a total of 
1k neurons per chip. Each neuron has a Content Addressable Memory (CAM) block, containing 64 addresses 
representing the pre-synaptic neurons that the neuron is subscribed to. Four different synapse types can be 
chosen for each synapse: fast excitatory/inhibitory, slow excitatory/inhibitory. Each synapse type is modelled 
by a dedicated DPI circuit [21] with globally shared bias values per core that determine synaptic weights and 
time constants. These circuits produce EPSCs and IPSCs (Excitatory/Inhibitory Post Synaptic Currents), with 
time constants that can range from a few microseconds to hundreds of milliseconds. The analog circuits are 
operated in the sub-threshold domain, thus minimizing the dynamic power consumption, and enabling 
implementations of neural and synaptic behaviors with biologically plausible temporal dynamics. For each 
core, there is an on-chip programmable temperature-compensated bias-generator which supplies 25 
different parameters to the analog circuits to govern the behavior and dynamics of the neurons and 
synapses.The asynchronous CAMs on the synapses are used to store the tags of the source neuron addresses 
connected to them, while the SRAM cells are used to program the address of the destination core/chip that 
the neuron targets. 
DynapSEL is a five-core fully-asynchronous mixed-signal spiking neural network chip with on-chip learning 
(STDP) fabricated in 28nm FDSOI process with a silicon area of 2.8mm x 2.6mm. The 28 nm Dynaps-sel chip 
is a mixed-signal multi-core neuromorphic processor that comprises four neural processing cores, each with 
16 × 16 AEI&F neurons and 64 4-bit programmable synapses per neuron, and a fifth core with 1 × 64 neurons 
and 64 × 128 plastic synapses featuring on-chip learning circuits. The learning core also includes 64 × 64 non-
plastic synapses. All synaptic inputs in all cores are triggered by incoming Address Events (AEs), which are 
routed among cores and across chips by asynchronous Address-Event Representation (AER) digital router 
circuits.  Neurons integrate synaptic input currents and eventually produce output spikes, which are 
translated into AEs and routed to the desired destination via the AER routing circuits. Both chips include a 3-
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level hierarchical routing architecture for memory efficient routing of the events between multiple cores and 
chips which makes them scalable to much larger networks.  

2IFWTA chip [22,23]. The 2DIFWTA (2D Integrate-and-Fire Winner-Take-All) chip was developed at the 
cluster of Excellence in Cognitive Interaction Technology CITEC and Bielefeld University, Germany in the lab 
of Pr. Elisabetta Chicca. The 2DIFWTA chip was implemented using a standard 0.35-μm four-metal CMOS 
technology (Figure 18). It comprises a two-dimensional array of 32 × 64 (2,048) I&F neurons. Each neuron ) 
receives inputs from AER synapses (two excitatory and one inhibitory) and local excitatory synapses. The local 
connections implement recurrent cooperation for either a two-dimensional or 32 mono-dimensional WTA 
networks. Cooperation in 2D involves first-neighbour connections, while cooperation in 1D involves first- and 
second-neighbour connections. Competition has to be implemented through the AER communication 
protocol, and it is therefore flexible in terms of connectivity pattern. 

Tianjic chip [24,25]. The Tianjic chip is a fully synchronous digital ASIC that integrates two approaches, namely 
the prevailing computer-science-based artificial neural network (ANN) and neuroscience-inspired (SNN) 
models and algorithms, to provide a hybrid, synergistic platform. The Tianjic chip adopts a many-core 
architecture, reconfigurable building blocks and a streamlined dataflow with hybrid coding schemes.  A 28-
nm prototype chip was fabricated in the in UMC 28-nm HLP CMOS process with >610-GB/s internal memory 
bandwidth. Tianjic is the first unified ASIC that covers most neural network models across neuromorphic 
computing and deep learning. The unified functional core (UFC) has a number of neurons N = 256 and 156 
UFCs are integrated in one single chip. Tianjic requires 5050 clock cycles to complete a round of computation 
and communication, which reflects the minimum latency of the time phase. For a single chip, the effective 
peak power efficiency is 1.28 TOPS/W (ANN mode) and 649 GSyOPS/W (SNN mode), and the internal memory 
bandwidth could reach >610 GB/s.  

ODIN [26]. Odin is a 28-nm digital neuromorphic chip by Catholic University Louvain in 2019 supporting 
simple forms of on-chip spike-driven synaptic plasticity [8]. The core sup- ports 256 neurons that can be 
configured to implement first- order LIF dynamics as well as second-order Izhikevich dy- namics. The neuronal 
parameters are stored in a 4-kilobyte SRAM array, and a global controller is used to time-multi- plex the 
neuron logic circuit to implement the dynamics of the neurons in a sequential fashion. The core also 
integrates 3-bit 2562 synapses, which are implemented as a 32-kilobyte SRAM array. An additional bit is used 
per synapse to enable or disable online learning. 

Finally, a group at Intel has recently reported in 2019 a paper [27] describing a reconfigurable 4096-neuron, 
1M-synapse chip in 10-nm FinFET CMOS . The SNN features digital circuits for leaky integrate and fire neuron 
models, on-chip spike-timing-dependent plasticity (STDP) learning, and high-fan-out multicast spike 
communication. The SNN achieves a peak throughput of 25.2 GSOP/s at 0.9 V, peak energy efficiency of 3.8 
pJ/SOP at 525 mV, and 2.3-μW/neuron operation at 450 mV. On-chip unsupervised STDP trains a spiking 
restricted Boltzmann machine to de-noise Modified National Institute of Standards and Technology (MNIST) 
digits and to reconstruct natural scene images with RMSE of 0.036. A binary-activation multilayer perceptron 
with 50% sparse weights is trained offline with error backpropagation to classify MNIST digits with 97.9% 
accuracy at 1.7-μJ/classification.  
Finally, additional literature works are also related to accelerators, for completeness we report the related 
references of some of them: Eyeriss [28], ESE [29], EIE [30], DRISLA [31], DNA [32]  
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Section II: EMERGING NEUROMORPHIC TECHNOLOGIES BEYOND CMOS 
2.1 Memristive devices technologies: from physics of novel devices to the implementation of 
synaptic and neuron functionalities 

The so-named memristive device technologies include a broad class of two or three-terminal devices whose 
resistance can be modified upon electrical stimuli. The resistance changes can last for short or long time 
scales, leading to a volatile or non-volatile memory effect, respectively. Memristive devices are based on a 
large variety of physical mechanisms, such as redox reactions and ion migration, phase transitions, spin-
polarized tunnelling, and ferroelectric polarization [1-6], and they have the potential to meet the 
considerable demand for new devices that enable energy-efficient and area-efficient information processing 
beyond the von Neumann paradigm [1, 6-9]. The leading memristive technologies which are currently at high 
maturity level are those firstly developed as non-volatile memory devices for storage applications and then 
integrated in large arrays and in combination with CMOS, namely resistive random access memory (RRAM), 
Phase change memory (PCM), Ferroelectric memory (FeRAM), and magnetoresistive random access 
memories (MRAM). Recently, RRAM, PCM, FeRAM and spin-transfer torque MRAM have been receiving 
increasing interest for neuromorphic computing, and many hardware demonstration have been reported at 
device, but also circuit and systems level [10-12]. The results are promising  and despite the system level 
integration is still not at the level of the fully CMOS-based one, the field is improving very fast, and driven by 
the parallel advancement of these technologies and their CMOS integration for storage or in-memory 
computing applications. In addition to the more consolidated technologies, many developments are 
underway towards  new and less matures concepts which span from new materials (2D, nanowires) [13,14], 
devices based on metal-insulator transition (for instance VO2-based devices) [15,16], organic material [17], 
advanced device concepts in the field of spintronics (domain wall, race-trace memory, skyrmions) [6,18] and 
photonics[19] . A recent review on emerging neuromorphic devices and architectures enabled by quantum 
dots, metal nanoparticles, polymers, nanotubes, nanowires, two-dimensional layered materials and van der 
Waals heterojunctions can be found in [20].  
 
The interesting device features which can be exploited for neuromorphic computing are, in some extent, the 
same engineered for storage applications. In particular we can mention the capability to retain the 
information for extended time ( i.e., their non-volatility), fast switching speed, low switching energy, long 
cycling switching  endurance, compact size, low process temperature fabrication (down to < 400 °C), 
compatibility with CMOS integration, stackability on multi-layer to increase the density. Despite the 
differences and peculiarity of each technology, the listed properties can enable the use of memristive device 
technologies in complex circuits and systems, and the high device density decreases the cost of computing 
systems. Moreover, it is worth noting that these devices can exhibit additional interesting features which can 
be explored and optimized for neuromorphic computing, in particular the multilevel state or analogue 
operation,  stochasticity and intrinsic variability, rich dynamics of the devices including the possibility to 
engineer their retention in different time scales [1,7-9] . Today, there is therefore a significant effort in the 
scientific and industrial community to take advantage of these new technologies to build a brain inspired 
computing hardware, mimicking key features of biological synapses and neurons, such non-volatility and 
plasticity, as well as oscillatory and stochastic behaviour. While it is not generally true that a single memristive 
device can implement at hardware level all the desired functionalities reproducing the synaptic or neural 
dynamics, memristive devices can enable the fabrication of small circuit blocks for synapses and neurons, 
bringing the additional advantage, with respect to standard CMOS solutions, of non-volatility and overall 
smaller size. Many solutions have been currently already proposed for the hardware implementation of 
synaptic and neuronal functionalities, as  listed below. 
 
2.2. Synapse Implementation.  
The key features of artificial synapses are the ability to update their states given new information (learning, 
plasticity) and to store analogue information (memory). Two approaches have been mainly proposed to 
implement synapses: analogue synapses which exploit the multilevel or analog control of RRAM [1,2,21], 
PCM [1,22,23] and FeRAM [2,24-26] devices; and  advanced spintronic devices storing analogue information 
in magnetic textures (as demonstrated through domain wall motion in magnetic tunnel junctions, or 
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representing analogue information in the number of magnetic skyrmions). [6, 18] . A second approach relies 
on the use of binary stochastic device, as demonstrated for filamentary RRAM [9,27,28], and STT-MRAM  [29] 
 
2.3 Neuron function implementation.  
Despite currently the neuron functionalities in hardware neural network can be implemented in CMOS by 
using transistors and capacitor, the stochastic, volatility and non-linear properties of memristive device 
technologies pave the way of building advanced  low power and compact hardware neuronal blocks  
representing complex and biological inspired neural function. In particular, we can mention FeRAM [30] , VO2 
–based MIT devices [14,31,32], PCM [33], STT-MRAM [34], and spin-torque nano-oscillators (i.e. specific 
types of magnetic tunnel junctions, which can be driven into spontaneous microwave oscillations by an 
injected direct current) [6,35] 
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Section III. NEUROMORPHIC SYSTEMS BASED ON  MIXED CMOS-MEMRISTIVE 
TECHNOLOGIES ARCHITECTURES 
3.1. Introduction. 

The aim of this section is to present the current state of the art of neuromorphic hardware based on mixed 

CMOS-memristive device neuromorphic chips. We will mainly focus on the demonstration of monolithic 
integrated CMOS-memristive devices in a chip. In addition we will list any relevant advancement on systems 
based on a mixed software – hardware level, or board demonstration. It is worth noting that currently most 
of the neuromorphic chip or chip for artificial intelligence still use  external memories or costly embedded 
SRAM. Anyway, it more and more important to have memory embedded as close as possible to the 
processing element, and therefore embedded memory technology (or more in general memristive 
technologies) with CMOS is a hot topic for future neuromorphic chips. Then it is expected in the future that 
the number of proposed neuromorphic architectures which exploit new memory technologies will increase 
in the future.  A summary and comparison of current emerging memories under investigation for 
neuromorphic computing can be found in the following Table (Figure 3.1) extracted from the review paper 
by V. Milo et al. [1]  

 
Figure 3.1. Comparison of key features exhibited by CMOS mainstream memory devices and 
memristive emerging memory devices under investigation to implement neuromorphic 
computing in hardware. Reproduced from [1]. 
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3.2 Mixed CMOS-memristive devices architecture:  monolithic integration of memristive devices 
(RRAM and PCM) with CMOS. 

In this paragraph we describe few examples of fully integrated CMOS-RRAM neuromorphic chips. 

SPIRIT chip.  SPIKING NEURAL NETWORK WITH ANALOG NEURONS AND RRAM SYNAPSES - CEA-LETI, 
France 

The Spirit chip [2] is a chip featuring the complete integration of a Spiking Neural Network, combining analog 
neurons and Resistive RAM (RRAM)-based synapses. The implemented topology is a perceptron, aimed at 
performing MNIST classification. An existing framework was tailored for offline learning and weight 
quantization. The test chip, fabricated in 130nm CMOS, shows well-controlled integration of synaptic 
currents and no RRAM read disturb issue during inference tasks (at least 750M spikes). The number of RRAM 
synapses/mm2 is 16 kbit, The classification accuracy is 84%, with a 3.6 pJ energy dissipation per spike at the 
synapse and neuron level (up to 5x lower vs. similar chips using formal coding). 

Moreover, additional chips are the one proposed by CNRS and CEA-LETI [3], and  by CEA.LETI – Stanford [4]. 
At ISSCC 2019, CEA-LETI and Stanford University jointly presented a testchip integrating 18kB of ReRAM on 
top of 130nm silicon CMOS with a MCU 16-bit with 8KB of SRAM [4]. The proof-of-concept chip was validated 
for a variety of applications including machine learning, control, security, AIoT. 

RAND chip. Resistive Analog Neuro Device (RAND) chip from PANASONIC  

The RAND chip proposed by Panasonic [5] is a low-power  and  high-accuracy  neural-network (NN)  processor  
using  ReRAM to store weights as analog resistance. They proposed a ReRAM perceptron circuit for realizing 
large scale integration, highly accurate cell current controlled writing scheme, and flexible network 
architecture (FNA) in which any NNs can be configured. The fabricated 180nm test chip shows well-controlled 
analog cell current with linear 30μA dynamic range and 0.59μA variation of 1 sigma, results in 90.8% MNIST 
numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell 
current and 66.5 TOPS/W power efficiency. The RAND chip fabricated by 180nm process consumes power of 
15.8mW on a 1024 input inference-READ, achieving power efficiency of 20.7 TOPS/W. In addition, 40nm 
ReRAM reduces power consumption during an inference-READ to 9.9mW, thus achieving power efficiency of 
66.5 TOPS/W 

ReASOn chip – University of Zürich, Switzerland: 130 nm CMOS test-chip with integrated RRAM.  

ReASOn (Resistive Array of Synapses with ONline learning) [6] is a test-chip featuring 2048 memristive devices 
(HfO2 RRAM) that implement 1024 memory cells connected to 2 neurons via a programmable routing fabric.  
The neurons include circuits that implement online learning.  This chip also features test circuits relevant for 
neuromorphic applications including an alpha synapse, shunting synapse, Hebbian/anti-Hebbian/stop 
learning, and a new neuron circuit. All the circuits are highly tunable using external biases to make testing 
and experimentation easier. The ReASOn chips was developed under the NeuRAM3 project 
(http://www.neuram3.eu). The hardware realization is fully-integrated with CMOS by two-stage process: 
traditional CMOS process to the penultimate metal layer (foundry fabrication); and RRAM devices fabricated 
by CEA-LETI as a post processing. 

Process 130 nm CMOS with an extra post-processing step 
Power domains 1.2 V and 4.7 V 
Number of IOs and packaging 104, CQFP128 
Area of the chip 2705.16 um x 1905.16 um 
Neuron type Leaky Integrate and Fire with learning block 
Number of Synapses and Neurons 1024 plastic synapses and 2 neurons 

Specification of the ReASOn chip, as from the http://www.neuram3.eu web site 

 

http://www.neuram3.eu/
http://www.neuram3.eu/
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Non-volatile-memory for synaptic signal processing – IBM Research 

At IBM Research, the work on integrating analog synaptic signal processing on digital CMOS is bundled in the 
AI Hardware Center [7]. The center is focused on enabling next-generation chips and systems that support 
the tremendous processing power and unprecedented speed that AI requires to realize its full potential. In 
Europe, the IBM Research lab located in Zurich is a strong contributor to this effort. Crossbar arrays 
containing memristive devices are integrated in the back-end-of-line of a CMOS chip. The array performs an 
analog computing of the synaptic interconnect between two layers of neurons in a deep neural network. The 
memristors represent the weights of the neural network. Requirements on the memristors depend on their 
application, inference or training. For deep neural network inference, the memristive devices must be tuned 
to the desired resistance values at up to 100 levels. Long term retention and stability are key properties for 
this application. Memristive elements based on phase change materials (PCM) are an excellent candidate [8]. 
High-end demonstrations showing the integration of these devices in the back-end-of-line of a CMOS process 
were realized [8-10]. For training neural networks on an analog synaptic signal processor, the controlled 
change of the resistance is essential. PCM devices can be tuned from higher to lower resistance by 
crystallizing the phase change element. Moving back to a high resistance requires a full amorphization. 
Resistive RAM devices based on oxides in which a filamentary conductive path is formed offer the potential 
for CMOS compatibility and enhanced resistance control [11, 12]. The technological efforts are 
complemented with improvements of DNN training algorithms to facilitate the application of analog synaptic 
signal processing [13].  
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