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Note about the updates compared to the first draft (Deliverable D2.2): 
Taking advantage of discussion with the actors of the field, in particular during the 
different online events organised by the consortium, we have gathered more 
information and have been able to update the Roadmap in consequence. The whole 
document has been reviewed and improved by the consortium. Some sections have 
been significantly rewritten. In particular: 

- A market analysis has been added 
- The “Challenges” section has been completed with a description of paths for 

moving forward for each challenge, as well as with examples of concrete 
actions to undertake. 

- The “Technology” section has been completed. 
- A section about the different actors and their roles has been added. 
- The axes of the next steps have been detailed and framed into timelines. 

Summary 
This deliverable is the final NEUROTECH Roadmap for Neuromorphic Computing 
Technologies. Neuromorphic computing is a booming interdisciplinary field which 
aims at building computing systems that take inspiration from the brain at the 
hardware level. In this document we start by defining the goals of the field. Then we 
explain the main applications of the field, which makes it so promising, and provide a 
market analysis. We present the main technologies that support neuromorphic 
computing. We explain the challenges that the field is currently facing and provide 
paths to overcome them. We provide guidelines toward industry adoption of 
neuromorphic computing. Finally we present timelines of the main directions in which 
we expect the field to progress. 
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1 Introduction:  

1.1 The Goal of the Roadmap 
 
By taking loose inspiration from the brain, artificial neural network algorithms have 
made tremendous progress in artificial intelligence. However, to unlock significant 
gains in terms of novel real-world capabilities, performance and efficiency, a more 
ambitious step needs to be taken: to develop a new technology that emulates neural 
computation directly at the hardware level.  
 
Pursuing this goal, neuromorphic computing is a booming field bringing together 
several fields of research (electrical engineering, computer science, physics, material 
science, computational neuroscience). Because of its many applications, it has 
attracted the attention of industry as well as innovative SME.  
 
The goal of this roadmap is to provide answers to the following questions: 

- What is neuromorphic computing and what are its applications ?  
- What are the challenges to the field? 
- What steps are needed to enable industry adoption? 

 
We expect this Roadmap to be useful to a wide range of audience, including the 
following: 

- Researchers from various fields eager to link their research topic to 
neuromorphic computing will get an idea of the critical questions and 
challenges to be solved. 

- Research departments of companies can be convinced to invest in 
neuromorphic computing and given an idea of where to start. 

- Policy makers can be informed on the importance of the field and of the issues 
that need to be pushed for impact to be realized. 

1.2 Approach to Developing a Roadmap 
 
This roadmap was written and updated continuously during the project. 
We used the live NEUROTECH Forum to collect opinions from experts and the 
community on several questions related to the NCT Roadmap. This was done during a 
guided panel discussion (recording is available) and with an online questionnaire, 
which the Forum participants were invited to fill-in. The members of the Industry 
Work Group were subsequently contacted to give their opinion. 
The NEUROTECH online seminars series (both Educational and Industry events) were 
key opportunities to collect insights, in particular during the open panel sessions 
where current issues of the field were debated. 
 

2 Neuromorphic Computing as a Goal 
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Our first action for developing a Roadmap was to improve the definition of 
neuromorphic computing. Rather than having an inside/outside boundary, we see 
neuromorphic computing as a goal towards which different directions converge. 
These directions are schematized in Figure 1. They correspond to features of the brain 
as a computer, which we seek inspiration from. These directions structure the 
roadmap of neuromorphic computing as they are the guiding principles of the field. 
 
Each of these directions represent a breakthrough from the current computing 
paradigm. As such, Neuromorphic computing represents an extremely ambitious 
multi-disciplinary effort. Each direction will require significant advances in computing 
theory, architecture, device physics, software and algorithms. 
 

 
Figure 1 Neuromorphic computing as a goal 

2.1 Hardware vs. Simulation 
Taking inspiration from the brain for computing is already present in machine learning 
and artificial intelligence through artificial neural network algorithms. This abstract 
inspiration has already given rise to tremendous progress in image, video, audio and 
natural language processing, and to successful commercial applications. However, in 
order to unlock significant gains in terms of performance and efficiency, a more 
ambitious step needs to be taken: to build a new kind of computer, inspired from the 
brain at the hardware level. This is the goal of neuromorphic computing. We seek not 
just simulating artificial neural networks, but to actually build them. 
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2.2 Efficient vs. Power-hungry 
Application wise, one key motivation for neuromorphic computing is to achieve 
significantly higher power efficiency than existing solutions. Artificial neural networks, 
when run on conventional hardware, consume a lot of energy. State of the art GPUs 
consume several hundreds of Watts, which limits the deployment of neural networks 
on embedded systems. Even supercomputers consuming a Mega Watt cannot 
emulate the whole human brain, which limits our ability to improve our understanding 
of the brain through such simulations. In comparison, the human brain consumes only 
20 Watts. The energy efficiency of the brain is several hundreds of tera operations per 
second and per Watt, while existing solutions are limited to a few tera operations per 
second and per Watt. By building computers inspired from the brain at the hardware 
level, neuromorphic computing aspires to bridge this energy efficiency gap. For 
example, sensory computing in the brain achieves a large part of its efficiency by 
operating in an event-based manner, where signals are only sampled and transmitted 
when new information either arrives or is computed. Spiking architectures natively 
support this scheme and thus support efficiency gains through event-based 
processing. Nevertheless, it is our goal to present a broad perspective taking into 
account both artificial and spiking systems. 
 

2.3 Parallel vs. Sequential 
One of the most impressive features of the human brain is its massive parallelism. 
Although each neuron computes at the millisecond scale (much slower than CMOS 
transistors which function below the nanosecond), the brain can perform 100 tera 
operations per second, orders of magnitude more than artificial neural networks on 
conventional computers. Parallel computing is a much studied topic beyond the scope 
of neuromorphic computing. However, parallel computing in conventional computer 
architectures is quite limited. Approaching the parallelism of the brain will require 
drastic changes in computer architectures. Moreover, it will require low power 
components so that they can all function simultaneously. Indeed, in current 
processors, the whole chip cannot function simultaneously because of power budget 
constraints. 
 

2.4 In-memory Computing vs. von Neumann Architecture 
Conventional computers rely on the von Neumann architecture, where memory and 
computing are physically separated. In consequence, a large part of the energy 
consumption and delays are due to the transfer of information between memory and 
computing parts, a phenomenon often referred to as the “von Neumann bottleneck”. 
In neural network algorithms, this issue is critical because huge numbers of 
parameters need to be stored and frequently addressed. The brain is extremely 
different in this regard: memory and computing are completely intertwined. The 
neurons, which compute, are connected by synapses, which carry the memory. 
Neuromorphic computing aims at bringing memory and computing together to 
achieve “in-memory computing”.  
In-memory computing is being made possible through the development of emerging 
nanoscale memory devices. Various classes of such memories exist and will be 
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discussed in this roadmap. Their common assets are that they are non-volatile, fast 
and low energy, can be read and written electrically or in some cases optically and can 
be monolithically integrated into CMOS chips. 
 

2.5 Plastic vs. Rigid 
Learning in the brain is made possible by its plasticity. The connections between 
neurons – the synapses – are not rigid but plastic, which means they can be modified. 
Learning, both in the brain and in artificial neural networks algorithms, corresponds 
to repetitive modification of the synapses until reaching a set of connections enabling 
the neural network to perform tasks accurately. In conventional computers, this is 
done by explicit modification of the memory banks storing the weights. Neuromorphic 
computing aims at building systems where weights are self-modified through local 
rules. Here again, the role of non-volatile memories intertwined with computing 
circuits is critical. Their dynamics makes it possible to implement bio-inspired learning 
rules. For instance, memristors can implement Spike Timing Dependent Plasticity, a 
bio-inspired rule for unsupervised learning. 
 

2.6 Analogue vs. Digital 
Conventional computers rely on digital encoding: voltages in the processor at the 
steady state only take two values, which represent 0 and 1. Transient intermediary 
values do not represent anything. All numbers are coded in binary, as a string of 0 and 
1. In the brain, this is not the case. The electrical potential at the membranes of 
neurons can take continuous values, and so can the synaptic weights. Reproducing 
such behavior with digital encoding takes large circuits. Thus, using directly an 
analogue encoding could improve efficiency. Neuromorphic computing aims at using 
components with intrinsic analogue behavior mimicking the key functions of neurons 
and synapses. For neurons, this can be achieved by CMOS transistors used in an 
analogue regime and by emerging technologies such as spintronic nanodevices or 
photonics. For synapses, which also require non-volatility, emerging memories are a 
key enabler.  
 

2.7 Dynamic vs. Static 
Conventional computers use the steady state of their circuits to encode information. 
On the contrary, the brain is a complex dynamic system. Biological neurons are non-
linear oscillators that emit spikes of voltage. They are coupled to each other and 
capable of collective behavior such as synchronization. There are also some 
indications that the brain functions at the critical point between order and chaos. 
Neuromorphic computing aims at emulating such dynamic behavior in order to go 
beyond the possibilities of static neural networks, in particular regarding learning. 
Here again, it is key to have circuits and components with intrinsic analogue dynamics 
emulating neural functions. Coupled oscillators can be achieved with CMOS ring 
oscillators, spintronic devices, metal-oxide sandwiches, photonics devices etc. 
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2.8 Spiking vs. Clocked 
Conventional computers are run by a clock which sets the pace of all circuits. There is 
no such clock in the brain. Neurons emit and receive spikes in an asynchronous way. 
Neuromorphic aims at building computers built on these principles. By having activity 
only when necessary, energy consumption will be reduced.  
 

2.9 Stochastic vs. Exact 
Conventional computers aim at very high precision, coding numbers in 64 bits floating 
point precision. In the brain, this is far from the case as the biological environment is 
noisy and neurons and synapses exhibit variability and stochasticity. Resilience to such 
imprecision seems to be a key asset of neural networks. There are even suggestions 
that the brain uses noise for computing. Relaxing the constraints on the exactitude of 
components and computing steps will decrease energy consumption. Obtaining 
accurate results with approximate computing components and steps is a goal of 
neuromorphic computing. This will be crucial to be able to use components in their 
analogue regime, where noise and variability are more significant. 
 

3 Applications “Pool” 
 
Neuromorphic computing is both of scientific and practical interest. This illustrated by 
the fact that both academics and industrialists (from large groups to start-ups) are 
active in the field. 
 
By definition, neuromorphic computing should provide solutions for problems where 
the brain is particularly efficient. Neuromorphic computing does not aim at replacing 
general computing. Rather, neuromorphic computing will be used in specialized chips 
that work together with general-purpose chips.  
 
Here, we provide an overview of the most promising applications of neuromorphic 
computing. To select these applications, we have solicited input from the Work 
Groups – in particular the Industry group – as well as the Forum participants, both by 
email and during the panel discussions at the NEUROTECH Forum and at the online 
NEUROTECH events. These answers complete the results of the internal discussions of 
the consortium. 
 

3.1 Artificial Intelligence on the Edge 
Neuromorphic computing will provide systems capable of running state of the art 
artificial intelligence tasks – deep neural networks – while consuming little power and 
energy. The superior energy efficiency of event-based systems will enable applications 
of signal processing, inference and control at much lower power budgets than current 
technology. This opens the way to the deployment of artificial intelligence on the edge 
and in embedded systems, where consumption and size are critical. 
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Key applications are: 
▪ Detection (always on sensor processing, very low latency and low power, ~10 

microW) 
▪ Recognition (could be triggered by ultralow-power detection, power: ~0.1mW) 
▪ Situation awareness (semantic map of the environment, needs to be stored and 

updated online) 

3.2 Sensor Processing 
“Smart” sensors currently still rely heavily on computing centers where they send raw 
data to be processed and sent back. The ability for sensors to process information on 
site without data transfer would provide faster response as well as better security and 
privacy at a much lower total power consumption. 
Neuromorphic computing could in particular be useful for the observation of sensory 
signals and decision to trigger further processing or an action made on the edge (bio-
signal monitoring, fall detection, voice detection, etc.). 
Neuromorphic computing will be a key enabler of an efficient and secure internet of 
things. 

3.3 Health 
Health is a field that is currently being transformed by neural networks, for instance 
for classifying tumor images into benign or malignant. Neuromorphic computing could 
bring further benefits, in particular for processing dynamical signals and time series. 
One example of application is ECG online evaluation.  
The potential of neuromorphic computing for low power, small size chips performing 
artificial intelligence tasks can revolutionize biomedical sensors: implants could be 
capable of performing real time complex monitoring. 
In health, the importance of data privacy is huge, making on-site processing of 
information even more critical. 

3.4 Robotics 
A natural application for neuromorphic computing is robotics. In particular, it could 
give rise to agile, compliant robots with HRI capabilities such as: 
▪ Learning dynamical models 
▪ Coordination of behavior 
▪ Force control 

Merging health with robotics is full of applications for neuromorphic computing. 
Smart pills capable of action in the body and prosthetics are two key examples. 
Event-based systems for sensing, inference and control will enable lower latency and 
higher energy efficiency in robotic systems. 

3.5 Optimization  
Artificial neural networks use learning to solve large optimization problems. This has 
many applications outside what is usually thought of as cognitive tasks. This includes: 
▪ Complex systems with many parameters 
▪ High performance computing   
▪ Thermodynamic simulation (which involves massive matrix-multiplication 

tasks which could be accelerated similar to NCT) 
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3.6 Natural Language Processing 
Neuromorphic computing has the potential to process natural language and perform 
tasks such as translation and interpretation. It will be able to process speech in real 
time, from the raw dynamical data, to the reasoning on the extracted meaning. 

3.7 Personal Assistants 
Combining different applications of neuromorphic computing such as optimization 
and natural language processing will lead to more efficient personal assistants. These 
will be capable of time management and scheduling, but also of assistive robotics and 
care, in particular for elders. 

3.8 Autonomous Vehicles 
Combining robotics, sensory processing, optimization, and potentially natural 
language processing, autonomous vehicles have a strong need for neuromorphic 
computing. Many large industrial groups are working on the topic. One critical 
limitation of the autonomous car is the power consumption and size of the computing 
systems it relies on (several kW and a large space in the trunk). 

3.9 Smart Manufacturing  
Industrial machines and processes can benefit greatly from neuromorphic computing. 
Optimization of a whole process or fabrication chain is one example. Robotics 
applications of neuromorphic computing will make fabrication more efficient. 
Neuromorphic computing can also provide solutions for anomaly detection in time 
series, automatization of controls and tests, design for manufacturing, defect 
detection and forecast, predictive maintenance of machines etc. These will make 
industry more sustainable. 

3.10 Computational Neuroscience 
Neuromorphic chips will be privileged systems to simulate biological neural networks. 
Thus, they could contribute to understanding the brain. This would bring massive 
novel knowledge but also provide new treatment for neurological diseases. It might 
also bring some light on how to achieve general intelligence. 
 
 
4 Neuromorphic Computing Market Analysis 
 
A careful market analysis, and prediction for Neuromorphic Computing’s share of it, is 
at this stage purely speculative as little consensus can be found between business 
analysts. This may be due to the lack of clear definitions of terms with very fuzzy 
frontiers between Artificial Intelligence, Deep Learning, Neuromorphic Architectures, 
Neural Chips. Sometimes all these are used interchangeably or even mixing the 
technological achievements or goals and applicative or use-case deployments. In 
addition, market analysts consider different criteria such as generated revenues, 
benefits, investments etc. Expected market growth may thus vary significantly based 
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on these considerations. We refer the reader to the aimultiple1 for an in-depth 
example of the different axes of analysis for the AI market predictions.   
 
In the following, we attempt to give a first review of the neuromorphic market 
estimations. This is based on a study by Yole Development2 that seem to have a similar 
understanding of the concept as we do, as well as a clear separation between 
neuromorphic computing and neuromorphic sensing, allowing for better identifying 
the main stakeholders, as shown in the timeline in Figure 2. Notice that the past five 
years witnessed the previously mentioned democratization tentative of 
neuromorphic technologies, as indicated by the increasing number of new actors. This 
comes with the diversification of the focus for each of these companies, instead of 
competing over the “unique” general-purpose architecture. In other words, the 
upcoming decade should be more marked by striving towards more and more 
specialized solutions for different purposes, and perhaps an idea of cohabitation with 
current technologies instead of their full replacement.  
 

 
Figure 2: Evolution of the main actors in neuromorphic technologies (computing and 

sensing) during time. 

Assuming that many of the open technical questions described in this roadmap are to 
be addressed successfully in the following decade or so, “2024 is expected to be the 
start of the neuromorphic revolution”, in particular in terms of market pervasiveness, 
according to Yole Developpement 20192.  Their predictions, corroborated by other 
sources, and which, according to them, could also serve as a roadmap, are shown in 
Figure 3, for the cumulated neuromorphic computing (processors) and sensing 
activities. 

	
1	131	Myth-Busting	Statistics	on	Artificial	Intelligence	(AI)	in	2021	(aimultiple.com)	
2	Yole	Developpement,	Neuromorphic	Sensing	Computing	Industry	Overview,	2019	
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Figure 3: market prediction by Yole Developpement, 2019, in the ideal situation 

where technological hurdles would all have been removed. 

Consistent with this table, business analysis experts predict that the automotive 
domain is the fastest growing market3 and by 2034 could take the lead in integrating 
neuromorphic technologies. Major neuromorphic chip manufacturers (Intel 
Corporation, Qualcomm Incorporated, BrainChip Holdings Ltd., HRL Laboratories LLC, 
IBM Corporation, …) aim to enhance their market reach, in particular through 
advanced driver assisted systems (ADAS) and autonomous vehicles4. Interestingly, by 
2034 the projected usage for neuromorphic technologies, aside from the automotive 
domain, is no longer mostly on the mobile market. It should be overcome by the 
industrial activities. In light of these considerations, the Neurotech efforts to build a 
community concerned not only with the technological considerations of each of the 
involved stakeholders but also on working towards identifying the right applications 
and benchmarking activities take an entire new meaning.   

 Overall, as shown in Figure 3, in three years’ time the total part of the market for 
neuromorphic technologies should be expected to reach over one hundred million 
USD5 and, a decade after, the predictions go to tens of billions of USD6. This is surely 
linked with the ubiquity of neural-based solutions at every stage of the producer-to-
consumer chain, from semiconductors to fully deployed systems, thanks to their 
proven software superiority over other methods, and despite their resource 
limitations. Most probably, the biggest part of the AI market is accountable for deep 
learning technologies today, and in this landscape, the need for actual chips is 
becoming apparent. 

	
3	Mordor Intelligence - Neuromorphic Chip Market | Growth, Trends, Forecasts (2020 - 2025)	
4	Neuromorphic Chip Market Size, Status, Demand and Global Outlook 2020 (brainchipinc.com)	
5	Figures corroborated by MarketWatch: MarketWatch, Press Release, Feb 2021	
6	Neuromorphic Chips - Global Market Trajectory & Analytics (researchandmarkets.com) estimate the 
growth to 10.4 Billion USD by 2027, despite the COVID-19 crisis	
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Again, according to Yole Developpement, Figure 4 shows the business landscape as of 
2019, highlighting the convergence of technological and application fields, in line with 
our vision for neuromorphic computing.  

 
Figure 4: The convergence towards Neuromorphic Computing and its major actors, 

shows that the topic is pursued by large and small companies alike. This is true for all 
stages in the processing chain going from semiconductor technologies and sensors to 

the application deployment industries. 

When joining progress in neural algorithms with the variety of markets addressed, it 
is clear that the application drive is undoubtedly pushing towards Artificial Intelligence 
adoption in most of the world’s businesses today7. Yet this can only be achieved by 
handling the energy efficiency, latency and perhaps privacy issues, which induces a 
shift in semiconductor and hardware manufacturers’ focus. 

 Currently, training neural networks occurs almost exclusively in data centers or offline 
architectures. With novel learning paradigms, more closely related to biology, such as 
unsupervised, local learning, a new step can be taken by brining training capability to 
more and more chips. In this respect, McKinsey&Company, acknowledges that the 
part of AI vs non-AI technologies (by AI meaning neural solutions) is growing8, from 17 
billion USD versus 223 billion USD for non-AI in 2020, up to an estimated 65 billion 
USD by 2025 versus 295 billion USD estimated for non-AI-related semiconductor 
available market. By total available semiconductor market McKinsey&Company 
includes: processors, memory and storage and excludes optics, discretes and micro-
electrical-mechanical systems. 

In same report they predict two main tendencies both at data centers and at the edge 
(Figure 5): 

	
7	Vision Spectra spring 2021 - Neuromorphic Processing Set to Propel Growth in AI 
8 AI hardware: Value creation for semiconductor companies | McKinsey	
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-   the need for both inference and training is to grow rapidly in the next 3 to 5 years 
(left-hand side) 

-   there should be a shift in the preferred architectures (right-hand side), with ASICs 
becoming the predominant choice, especially at the edge. 

Figure 5: Market growth and circuit prevalence at data center and edge levels, 
according to McKinsey&Company 

 

5 Technology: State of Art and Directions 
 
The slow-down in the scaling of CMOS transistors (often referred to as the “end of 
Moore’s law”), combined with the fact that the requirements of neuromorphic 
computing completely differ from conventional computing systems, have called for 
the use of new technologies for building neuromorphic chips. To a large extent, such 
platforms will build on the infrastructure, processes and silicon CMOS technology 
already available. 
 
The involvement of novel technologies brings opportunities for neuromorphic 
computing, both in terms of functionalities (such as dynamical systems or memories) 
and efficiency (power consumption, size, speed etc.).  
However, many of these technologies are not at the same maturity level as 
conventional digital CMOS transistors, which is a challenge for the development of 
neuromorphic chips, both for industries and academics.  
 
Here we review the major technologies used for neuromorphic computing. In this first 
draft of the roadmap, we have identified the major technologies and key points to 
evaluate the assets and drawbacks of these technologies.  
 
We list here the major technologies, from the most mature to the most exploratory. 
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5.1 Digital CMOS Technology 
The mainstay of the semiconductor manufacturing industry, digital CMOS is well 
understood and delivers very consistent performance in volume manufacture. It can 
access the most advanced semiconductor technologies, which helps offset its intrinsic 
energy-efficiency disadvantages compared with analogue circuits. When applied to 
neuromorphic architectures, asynchronous, clocked and hybrid approaches to circuit 
timing can be used, and algorithms can be mapped into fixed (albeit highly 
parameterised and configurable) circuits for efficiency or into software for flexibility. 
Examples of the former include the IBM TrueNorth and Intel Loihi, and of the latter 
include NEUROTECH partner the University of Manchester’s SpiNNaker many-core 
neuromorphic computing platform9. 
 
For details on CMOS based neuromorphic systems, we direct the reader to the 
following reviews: 

★ Furber, Steve. "Large-scale neuromorphic computing systems." Journal of 
neural engineering 13.5 (2016): 051001. 

★ Schuman, Catherine D., et al. "A survey of neuromorphic computing and neural 
networks in hardware." arXiv preprint arXiv:1705.06963 (2017). 

 
 
Today, the main challenges for digital CMOS neuromorphic platforms are : 

- tools that raise the level of abstraction that users work with to the levels seen 
in mainstream AI, such as Tensorflow, PyTorch, etc. 

- the development of effective training algorithms. 
 

In the next few years we expect the following advances: 
- increasing commercial use of digital neuromorphic technologies in edge 

applications. 
- digital neuromorphic accelerators integrated into general-purpose computing 

chips, in a similar way to the integration of neural network accelerators today. 
 

In the long term we expect the following advances: 
- 3D stacked integration will support integration densities approaching that of 

the brain 

5.2 Analogue/mixed-signal Technology 
Event-based analogue mixed-signal neuromorphic technology combines the compact 
and low power features of analogue circuits with the robustness and low-latency ones 
of digital event-based asynchronous ones. The key feature of the mixed-signal design 
approach, compared to pure digital ones, is the ability to build systems able to carry 
out processing with stringent resources in terms of power and memory by (i) only 
dissipating power when the data is present, and (ii) processing the data on-line, as it 
sensed or streamed through the system, using circuits that have time constants 
matched to the dynamics of the sensory signals processed, and without needing to 
store data or state variables in memory. This technology is an enabler for the 

	
9	Furber, Steve, and Petruț Bogdan. "SpiNNaker-A Spiking Neural Network Architecture." (2020): 350..	
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applications requiring sub-mW always-on real-time processing of sensory signals, for 
example in edge computing, personalized medicine and Internet of Things domains. 
Examples of neuromorphic processors that follow this approach are the DYNAP 
(Dynamic Neuromorphic Asynchronous Processor) series of devices10 developed by 
the UZH NEUROTECH members. 
 
For details on CMOS based neuromorphic systems, we direct the reader to the 
following reviews: 

★ Furber, Steve. "Large-scale neuromorphic computing systems." Journal of 
neural engineering 13.5 (2016): 051001. 

★ Schuman, Catherine D., et al. "A survey of neuromorphic computing and neural 
networks in hardware." arXiv preprint arXiv:1705.06963 (2017). 

 
Today, the main challenges for analogue and mixed-signal CMOS neuromorphic 
platforms are : 

- Variability in the characteristics of the computational units such as neurons 
and synapses 

- Difficult technology scaling 
- Large area consumption by capacitors which hold the state dynamics 
- Large leakage current limits the minimum static power consumption and 

increases the noise level 
 

In the next few years we expect the following advances: 
- Silicon On Insulator (SOI) technologies are less prone to variability because of 

the better control on the conductive channel 
- SOI technologies also have reduced leakage as a result of the removal of the 

drain-bulk and source-bulk junction diodes 
- Also, SOI technologies have a body biasing option which can control the 

amount of leakage 
 

In the long term we expect the following advances: 
- Large density capacitance in advanced technologies which would reduce the 

area required for holding state dynamics 
- Better design tools that make technology scaling easier for analog design 
- With the help of algorithms, variability in analog design can be tolerated or 

exploited 
 

5.3 Technologies Beyond CMOS 
As the CMOS technology approaches its scaling limits, more attention is being devoted 
to the development of emerging devices, which provide high functionality in a small 
footprint. In particular, the members of the NEUROTECH network are at the forefront 
of the development of memristive device technologies, which are a broad class of 
devices whose resistance can be modified upon by electrical stimuli.  

	
10	Moradi et al. ‘A scalable multicore architecture with heterogeneous memory structures for 
dynamic neuromorphic asynchronous processors (DYNAPs)’. IEEE transactions on biomedical circuits 
and systems, 12(1), 106-122. (2018)	
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The resistance changes can last for short or long time scales, leading to a volatile or 
non-volatile memory effect, respectively. Memristive devices are based on a large 
variety of physical mechanisms, such as redox reactions and ion migration, phase 
transitions, spin-polarized tunnelling, and ferroelectric polarization, and they have the 
potential to meet the considerable demand for new devices that enable energy-
efficient and area-efficient information processing beyond the von Neumann 
paradigm. The leading memristive technologies which are currently at high maturity 
level are those firstly developed as non-volatile memory devices for storage 
applications and then integrated in large arrays and in combination with CMOS, 
namely resistive random access memory (RRAM), Phase change memory (PCM), 
Ferroelectric memory (FeRAM), and magnetoresistive random access memories 
(MRAM). Recently, RRAM, PCM, FeRAM and spin-transfer torque MRAM have been 
receiving increasing interest for neuromorphic computing, and many hardware 
demonstrations have been reported at device, but also circuit and systems level. The 
results are promising and, despite the system-level integration still not being at the 
level of the fully CMOS-based ones, the field is improving very fast, and driven by the 
parallel advancement of these technologies and their CMOS integration for storage or 
in-memory computing applications. Furthermore, promising developments are 
underway towards new and less matures concepts which span from new materials 
(e.g. 2D, nanowires), metal-insulator transition (e.g. VO2-based), organic materials, 
spintronics (spin torque oscillators, domain walls, spin-waves, skyrmions) and 
photonics. 

5.3.1 Synapse Implementation  
The key features of artificial synapses are the ability to update their states given new 
information (learning, plasticity) and to store analogue information (memory). This 
can be implemented either with intrinsically analogue or multilevel devices (whether 
in RRAM, PCM and FeRAM devices, or using magnetic textures such as domain wall or 
skyrmions), or with binary stochastic devices (as demonstrated for filamentary RRAM, 
and STT-MRAM). In particular, NEUROTECH member CNR has shown RRAM to 
emulate analog synapses and demonstrated how this dynamics can  be exploited to 
improve the memory lifetime of spiking neural networks based on mixed CMOS-RRAM 
architecture11. 

5.3.2 Neuron Implementation  
The stochastic, volatility and non-linear properties of memristive device technologies 
are exploited to emulate neuronal behavior. Among promising technologies, we can 
mention FeRAM, VO2–based MIT devices, PCM, STT-MRAM, and spin-torque nano-
oscillators (i.e. specific types of magnetic tunnel junctions, which can be driven into 
spontaneous microwave oscillations by an injected direct current). In particular, 

	
11	Brivio et al., ‘Extended memory lifetime in spiking neural networks employing memristive synapses 
with nonlinear conductance dynamics’, Nanotechnology 30(1):015102 (2019)	
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NEUROTECH member CNRS/Thales has shown how to use the non-linear dynamics of 
the latter for processing12 
 
Several comprehensive reviews and books on the use of emerging technologies for 
neuromorphic computing have been written by the community. In particular: 
 

★ Marković, D., Mizrahi, A., Querlioz, D., & Grollier, J. (2020). Physics for 
neuromorphic computing. Nature Reviews Physics, 2(9), 499-510. 

★ Spiga, S., Sebastian, A., Querlioz, D., & Rajendran, B. (Eds.). (2020). Memristive 
Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to 
Applications-Computational Memory, Deep Learning, and Spiking Neural 
Networks. Woodhead Publishing. 

★ Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., & Eleftheriou, E. (2020). 
Memory devices and applications for in-memory computing. Nature 
nanotechnology, 15(7), 529-544. 

★ Grollier, J., Querlioz, D., Camsari, K. Y., Everschor-Sitte, K., Fukami, S., & Stiles, 
M. D. (2020). Neuromorphic spintronics. Nature electronics, 3(7), 360-370. 

★ Shastri, B. J., Tait, A. N., de Lima, T. F., Pernice, W. H., Bhaskaran, H., Wright, C. 
D., & Prucnal, P. R. (2021). Photonics for artificial intelligence and 
neuromorphic computing. Nature Photonics, 15(2), 102-114. 

 
Today, the main challenges for beyond CMOS neuromorphic platforms are: 

- Developing algorithms that take full advantage of device physics and are able 
to deal with device non-idealities (variability, synaptic programming, lack of 
available precision, etc.) 

- Scaling-up to very large scale systems capable of performing real-life tasks 
- Lack of availability of industrial quality devices for academics  

 
In the next few years we expect the following advances: 

- Larger hybrid CMOS/memristive systems using standard network topologies 
and algorithms 

- Demonstrations of systems exploiting the physics of nano-devices for local 
self-learning 

- Increase in devices performances (density, endurance, energy consumption) 
- Increase in availability of emerging devices (PCRAM, MRAM, OxRAM…) in 

industrial fabrication processes as well as corresponding design libraries 
- Better methods and tools for designing hybrid systems 
- Better understanding of which technology is appropriate for which type of 

computing / application. 
- Demonstration of computational building blocks with more emerging 

technologies (spin textures, quantum hardware, 2D materials, organic 
materials…) 

- Larger scale and integrated realizations of photonics-based systems 
 

	
12	Romera et al. ‘Vowel recognition with four coupled spin-torque nano-oscillators.’. Nature 563.7730: 
230-234. (2018).	
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In the long term we expect the following advances: 
- Automated tools for the development and design of hybrid chips including 

emerging devices 
- Possibility of commercial fabrication of hybrid chips 
- Adapted algorithms 
- Dedicated applications where novel technologies are required 
- Fully functional large scale platforms merging different technologies 

 

6 Challenges for Neuromorphic Computing 
 
In order to unlock its potential and provide the applications described above, 
neuromorphic computing must overcome several challenges. Discussions within the 
consortium, the work groups, at the Forum and at online events have allowed us to 
come up with a list of limitations and challenges that neuromorphic computing 
currently faces. 
 
Neuromorphic computing is mostly a recent field of study. Although some work had 
started in the early days of computing, the recent progress both in artificial 
intelligence and in emerging technologies has brought a new boom in neuromorphic 
computing. This has opened the door to many subfields, technologies and research 
directions. This novelty of the field also implies a lack of maturity, which comes with 
challenges that can be classified into four main categories. 
 
For each challenge,  we provide paths for moving forward as well as examples of 
concrete actions taken. 

6.1 Lack of Theoretical Foundations 

■ Neuromorphic Computing in General 
There are no clear theoretical foundations for neuromorphic computing. It is neither 
clear how exactly the brain works, nor which aspects of this working should be 
emulated by neuromorphic computing.  
In particular, event-based algorithms for signal processing, inference and control need 
to be developed and validated with regards to their reliability, efficiency and feasibility 
in neuromorphic systems. 

■ Learning 
Learning is a crucial element of computing systems inspired from the brain. In 
software artificial neural networks, it consumes huge amounts of data, time and 
energy. Neuromorphic computing aims at finding better approaches. However, these 
are still lacking clear solutions. 
 
In particular, neuromorphic computing aims at developing: 
� Training approaches using only local information 
� Better training & optimization of spiking neural networks  
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� Efficient online learning 
� Better understanding of unsupervised learning  

■ Relationship to Novel Substrates and Architectures 
Neuromorphic algorithms and architectures must be co-designed with their substrate. 
Theoretical foundations on how to achieve this are lacking. New bio-inspired concepts 
should be selected and optimized for their compatibility with electronic 
implementation. Computational models and algorithms for non-Von Neumann 
architectures (beyond neural networks, non-linear oscillator networks, Ising 
machines, optimizers, etc...). must be developed. The scalability concepts and laws 
(equivalent of Denard scaling for neuromorphic computing) are lacking and would be 
useful.  
 

� Paths for Moving Forward 
- Algorithm development for Spiking Neural Networks and particularly for time-

based computation and using sparsity.  
- Investigate what is the correct abstraction level for neural computation (neurons 

and synapses vs. populations vs. cortical columns). 
- Dedicated research on these topics and collaborations with neuroscientists and 

computer scientists must be conducted. These must keep in mind how to translate 
theoretical findings in usable hardware. 

- Access to the most technologically mature neuromorphic computing platforms will 
enable researchers to test novel algorithms. 

- Examples of concrete action taken: the  8th Annual Neuro-Inspired Computational 
Elements workshop, organized by NEUROTECH partner University of Heidelberg on 
March 16-19th 2021, provided dedicated tutorials to neuromorphic computing 
platforms BrainScales 2, Dynapse, SpiNNaker and Loihi. Furthermore, it featured 
many pieces of work tackling the development of hardware friendly bio-inspired 
learning algorithms. Videos of the presentations can be found on the YouTube 
channel of the workshop. The 6th Educational NEUROTECH online event (April 13th 
2021) focused on learning with spiking networks. 

 

6.2 Lack of Technological Maturity 

■ Novel Technologies Themselves 
Technologies beyond CMOS transistors in the digital regime suffer from low maturity. 
Some examples of such issues are: variability in analogue CMOS circuits, lack of 
endurance in memristive switching devices, difficulty to achieve analogue non-volatile 
memories. 

■ Accessibility 
Neuromorphic systems and devices are hard to access. The community should work 
on making hardware available, packaged for use, reliable and affordable. 
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The development of versatile neuromorphic building blocks to be integrated into 
larger systems is a possibility. 

� Paths for Moving Forward 
- To address this issue, the community should work both on material and device 

development and on novel computational paradigms that function in spite (or even 
thanks to) the issues faced by emerging technologies. 

- It is critical that the development of novel technologies is pursued not only by 
academics but also by the semiconductor industries so that neuromorphic systems 
can be brought to maturity as well as mass produced.  

- Examples of concrete actions taken: funding targeting the push of neuromorphic 
computing technologies to higher TRL, such as the Joint Undertaking ECSEL 
Andante project ; initiatives federating actors around specific technologies, such as 
the Spintronic Factory co-founded by Thales. 

 
 

6.3 Lack of Standardized Tools and Benchmarks 
 

■ Lack of Whole Stack from Hardware to Software 
Conventional computing has benefited from multi-decade development of the stack 
from hardware to software. This is not yet the case for neuromorphic computing. The 
different layers of the stack are not independent or well defined. Knowledge of the 
whole stack is important to develop neuromorphic systems. Working on the maturity 
of the stack would make it easier to address each issue and facilitate scaling up of 
systems to more complex networks and tasks. 

■ Lack of Tools for Development 
There are not yet standard tools for developing, inspecting and debugging 
neuromorphic systems. For instance, having a tool comparable to TensorFlow, a 
platform for deep learning that comprises a collection of deep learning algorithms and 
architectures that could be used for spiking neural networks would be of great use. 
Actors in the field are increasingly aware of this situation and have initiated this 
direction (ex: Applied Brain Research) but this effort needs to get much more global 
in the community. Open source tools are much more likely to be adopted by 
academics and industrials alike. Similarly, tools that support and facilitate the deep 
inspection of event-based spiking networks during run-time would be of great help in 
developing algorithms for large-scale neuromorphic systems. 

■ Lack of Benchmarks and Targeted Applications 
Neuromorphic computing is not necessarily efficient for the same applications as 
conventional software neural networks. New standard applications and benchmarks 
are still lacking for neuromorphic computing. As a consequence corresponding 
datasets are also lacking.  
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� Paths for Moving Forward 
- Putting together and sharing datasets  
- Funding projects that produce the relevant tools 
- Active communication within subfields around benchmarking 
- Example of concrete action taken: Sharing datasets relevant to neuromorphic 

computing, in particular event-based, on the Neurotech portal 
(https://neurotechai.eu/resources/datasets/)  
 

6.4 Lack of a Solid Community 
 
A strong and well identified community is critical for a scientific field of study, 
especially for a new and growing field. In the case of neuromorphic computing, this 
need is especially important but also complex to achieve. This is due to the 
heterogeneity and interdisciplinarity of the field. Neuromorphic computing brings 
together actors from computer science, neuroscience, physics, electronic engineering, 
material science and more. Academics, industrials and SME are involved. Such a 
diversity is a huge opportunity for the field both on the scientific and human sides. 
However, it requires special effort to make people from such different backgrounds 
communicate and collaborate.  
 
While community networks and events can self-organize in more narrow and mature 
fields, this should not be expected for neuromorphic computing, where a conscious 
action is needed. The Neurotech consortium and the resulting events and actions are 
a first step. As a striking example, many forum participants confided that this was the 
first neuromorphic computing event they had the opportunity to attend. More 
educational materials are also required to keep the community up to date with 
developments that are not in their core expertise, as well as to involve new actors. 
 
It is critical that such actions continue to be encouraged, both at the individual and 
institutional levels. 
 

� Paths for Moving Forward 
- Organize in person and well as virtual gatherings that are inclusive to the various 

subfields and actors of the community. 
- Emphasize educational content that can put everyone on the same page and 

playing field regarding knowledge.  
- Encourage collaborative projects where different disciplines and actors are 

present. 
- Encourage interactions between relevant projects and the community. 
- Encourage relevant training in academic programs, especially at graduate level.  
- Example of concrete actions taken: educational content such as the Neurotech 

Educational online seminars, organization of summer schools open to all career 
levels, production of handbooks, organization of recurrent gathering to create 
continuity, interactions around European projects such as the Neurotech Science 
and Technology Workgroup Webinar 
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7 Needs for Adoption by Industry 
 
Despite the importance and large span of applications for neuromorphic computing, 
a number of roadblocks need to be overcome in order to achieve adoption by industry. 
Here we present the main roadblocks described by industrial actors and provide paths 
for moving forward. 
 

7.1 Applications 
The community needs to find some “killer apps” that will demonstrate the potential 
of neuromorphic computing. 
These demonstrations should highlight the fact the neuromorphic chips are 
competitive with existing solutions and in particular software based deep neural 
networks. There are two ways for this:  
 

- Solve questions that deep learning is not capable of solving (such as reasoning, 
generalization to multiple tasks, catastrophic forgetting etc.). 

- Solve questions that deep learning is capable of solving but doing it more 
efficiently that accelerators can do. 

 
Finding these applications requires: 

� Interactions between research actors and end users. 
� Increasing TOPS/mm2 and TOPS/W by orders of magnitude for conventional 

neural networks (CNN, LSTM, FC, ...) 
� Clear benchmarking of existing and proposed solutions, close to real 

applications. 
� If neuromorphic computing cannot compete with software neural networks 

in general, finding areas where it can., e.g. in the domain of low-latency event-
based systems. 

� Performing demos on niche tasks. 
 

7.2 Maturity 
Neuromorphic computing is still immature technologically. Steps to make it more 
usable will require: 
 
� Increasing the technology readiness level of the beyond-CMOS technologies  
� Improving our understanding of neuromorphic computing to avoid a black-box 

situation 
� Definition and theorization of algorithms and computing/programming 

paradigms that use neuromorphic computing, for instance spiking neural 
networks, for performing engineering tasks. 

� Improving the scalability of devices and architectures 
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7.3 Ease of use 
In order to be adopted by industrials beyond pure research and development, 
neuromorphic computing should be easy to use. This requires: 
 
� More tools and infrastructure for development and debugging  
� Development of reliable compiler software stacks  
� Design of user-friendly GUIs that can help end-users to write neuromorphic 

networks, such as spiking neural networks, that performs practical tasks.  
Training people to have knowledge the whole stack (materials, devices, 
systems, algorithms, applications) 

� Providing easier access to existing systems and platforms 
� Developing methods for easier training and programming 

Tacking the large amount of data needed for the training by developing 
systems that require less data and making more data available 

� Catering to the development of communities to make skill transfer and 
collaboration easier. 

 
 
 
8 Actors and Roles 
 
The growth of the field requires the synergy of different actors, filling different roles. 
 
One role is to conduct the research, from fundamental to applied. This role is filled by 
academic laboratories, Research and Technology Organizations, and the research 
departments of companies. Technology providers and in particular foundries have a 
critical role for enabling other institutions to conduct research. It is important that 
these actors work together for a smooth increase of TRL of neuromorphic systems. 
There is a large number (over a hundred) of collaborative research projects funded by 
the EU. A list and cartography of these projects can be found in the Neurotech 
Deliverable D1.2. 
 
Another role is to use neuromorphic systems for applications. Many companies are 
interested in the applications offered by neuromorphic systems, either to use them 
themselves or to include them in their products. It is critical that research actors 
communicate with them to provide them information about the state of the art and 
possibilities, as well as get quantitative requirements for applications, so as to have 
target KPIs for the development of systems. 
 
Some companies are in the interesting position of being able to both conduct research 
and then develop and sell applications. Large companies (Intel, IBM, Qualcomm, 
Hewlett Packard, Samsung Electronics, ...) that have the ambition to be key players in 
the field can afford to invest a large effort in the development of neuromorphic 
systems. They can also afford to pursue the development of different technologies 
and applications in parallel. Their involvement will be critical to increase the maturity 
of systems and reduce their time to market. On the other hand, start-ups have the 
advantage of being flexible and willing to take risks on novel technologies and 
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disruptive algorithms. They can quickly prototype proof-of-concept demonstrators 
and concentrate on emerging applications to make their breach on the market.   

The list of SMEs searching to develop and commercialize neuromorphic technologies, 
both CMOS and hybrid technologies and targeting wide markets keeps growing. 
Without aiming for exhaustiveness, we list some of the very promising ones below. 

 Neural Chips and platforms: 

● SynSense (former AiCTX) – a spinoff from IniLabs (Univ. of Zurich, ETHZ Zurich) 
developing the DYNAP class of processors aiming for IoT and medical signal 
analysis among others (https://www.synsense-neuromorphic.com ) 

● GrAI Matter Labs – develops a very low-power spiking processor for edge 
applications aiming for markets such as drones, industrial automation, AR/VR, 
robotics (https://www.graimatterlabs.ai ) 

● LightON – a photonics startup developing the Optical Processing Unit co-
processor for massively parallel machine learning computations 
(https://lighton.ai/ ) 

● BrainChip – develops the AKIDA spiking neural processor, also for edge 
applications (https://brainchipinc.com/) 

● Rain Neuromorphics – a startup developing a physics-based analog 
neuromorphic processor (https://rain.ai) 

● AnotherBrain – focusing on energy-efficient chipset with self-learning, 
explainable algorithms (https://anotherbrain.ai/ )  

● Applied Brain Research inc. – develops a multi-HW platform and the software 
codesign and synthesis suite called “Nengo”, endowed with different learning 
algorithms and neural models ranging from conventional computing to spiking 
ASICs, FPGAs and controllers (https://appliedbrainresearch.com/ ) 

Dynamic Vision Sensors: 

● Prophesee – produces an event-driven vision sensor and SDK for very low-
power data-efficient computer vision systems (www.prophesee.ai) 

● IniVation – another spin-off from iniLabs producing also an event-driven vision 
sensor – announced mid-april 2021 as the first neuromorphic sensor to 
embark a satellite and reach space (https://inivation.com/ ) 

 
More broadly, we have compiled a list of companies with interest in neuromorphic 
computing, published in Deliverable D2.4. 
 
The role of the Neurotech consortium is to federate these actors and create synergies. 
Our main actions taken include: 

- Organization of Forums for gathering actors and discussing issues 
- Educational seminars to create common knowledge in the field as well as 

provide introductory materials for newcomers 
- Work group events to discuss current issues. The Industry workgroup presents 

companies working the field, the Science and Technology workgroup create 
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synergies between projects, the Ethics workgroup provides a platform to 
debate issues around ethical concerns 

- Provide resources for the field: videos of presentations, datasets for 
computing tasks, references of key publications 

- Keep up to date with the European projects in the field as well as with the 
companies active or interested in the field 

9 Outlook and Next Steps 
We have investigated the challenges to neuromorphic technology as well as collected 
opinion from industrial actors (leveraging the Forums and the Industry Work Group) 
about the need for industry adoption. From these intersecting concerns, we extract 5 
axes of growth for the field. Each axis corresponds to a timeline that we present here. 
Note that these timelines are meant to be modified and completed as the field 
evolves. 
 

9.1 Field and Community Maturity 
This axis is linked to both the novelty of the field and the fact that it is intrinsically 
multidisciplinary. It corresponds to the “Lack of solid community” challenge as well as 
an observed request from industry to have more information and educational 
material about NCT.  
The first step was to better define neuromorphic computing. We laid out our vision of 
the field in the present deliverable and published it in a perspective article13. 
 
The next steps include: 

- Providing educational material about NCT, available to all.  
- Organizing events with people from different subfields and backgrounds 
- Encouragement from funding agencies for collaborative NCT research 

project where different disciplines are merged 
 
The timeline below illustrates key steps ahead: 
 

	
13Donati, E., et al. "Neuromorphic technology in Europe: Brain-inspired technologies are advancing 
apace across Europe and are poised to help accelerate the AI revolution." The Innovation Platform 
(2020).	
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9.2 Scientific Development 
This axis is the core of NCT research. The next steps include: 

- Stronger theoretical foundations 
- Development of learning mechanisms 

 
The timeline below provides an overview of the key steps ahead. 
 

 
 

9.3 Technological Maturity 
This axis was both identified by the actors and the field and the end-users as a critical 
need. We have identified the most popular hardware subfields (see above) and 
produced a state of the art, leveraging the Science Work Group, available in 
Deliverable D1.2. 
 
Note that investment from large companies into specific technologies will speed up 
the maturity increase significantly. This applies to the quality of the devices 



28	
	

NEUROTECH Deliverable D2.6 

themselves as well as their availability and to the tools to develop systems using the 
technology. 
 
It is thus of critical importance that the technology providers are made to  see the 
interest of investing in novel technologies. One important path for this is incentives 
from policy makers to EU technology providers to develop NCT. 
 
The timeline below highlights the predicted maturity evolution of the main 
technologies: 
 

 
 

9.4 Tools for Development and Use 
Both actors within NCT research and end-users are in need of specific tools for 
development and use. These include dedicated benchmarks, datasets, automated 
design tools, programming libraries, etc. 
To favor uptake and the building of a larger community of users and stakeholders, the 
neuromorphic community should commit to the design of modular and reusable 
sensing and computing modules, starting from the standardization of the protocol of 
communication, i.e., Address Event Representation. Open-source implementations of 
algorithms and datasets sharing will push the progress of the field, also using common 
datasets for benchmarking. A milestone in this path is the definition of benchmarks 
that are valuable to validate neuromorphic systems. Commonly used datasets for SNN 
architectures and learning rules are derived from standard machine learning for 
vision, namely the event-driven version of the MNIST (N-MNIST). While it is important 
to compare against the mainstream community, these datasets do not capture the 
spatiotemporal analysis capability of SNN, nor can they test their adaptation and noise 
robustness features. While the neuromorphic vision community is tackling this issue 



29	
	

NEUROTECH Deliverable D2.6 

with the acquisition of ad-hoc datasets (e.g., the DVS-gestures dataset), the 
neuromorphic community at large needs benchmarks for the hardware platforms, 
cognition, action planning, control and execution modules and for the fully integrated 
system. 
At the same time, neuromorphic technologies require interface when need to be 
interfaced with application, i.e., robotics.  Working with streams of events, instead of 
static frames or batch, requires the development of ad-hoc interfaces and software 
libraries for handling the events. Currently, open-source JAVA and libraries -- ROS and 
YARP -- have been developed within two of the main robotic middlewares. However, 
they require contributions from a large community to grow and reach the maturity 
needed for successful adoption in robotics. 
 

 
 
7.5  Applications 
 
Application scope: The scope itself of neuromorphic computing applications will 
evolve. The evolution is from Narrow AI, to Broad AI, to General AI. 

Narrow AI is focused on addressing very focused tasks (such as buying a book with a 
voice-based device) based on “common knowledge.” That’s the reason narrow AI is 
scaling very quickly in the consumer world where there are a lot of common tasks and 
data to train these systems. 

Broad AI is about integrating AI within a specific business process of an enterprise 
where you need business- and enterprise-specific knowledge and data to train this 
type of system. 

General AI refers to machines that can perform any intellectual task a human can. 

 Application type: Applications will evolve from cloud based to AI to AI at the edge to 
AI everywhere. The Schematic below presents the main application steps ahead. 
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Conclusion 

Neuromorphic computing is a booming field with extremely promising applications, 
but which faces challenges due to its novelty and interdisciplinarity. The Neurotech 
consortium brings together actors from academic research, RTOs and industry. This 
first roadmap serves as a starting point to federate the field by stating clear goals as 
well as identifying challenges and paths to overcome them. In the next few years, we 
will be guided by this roadmap and will in turn update it as we move forward. 

 


